LangChain 基本概念详解
LangChain 是一个用于构建 大语言模型(LLM)应用 的框架,它提供了一系列工具,使开发者能够更轻松地集成 LLM 并实现复杂的 AI 任务。LangChain 主要由以下核心组件组成:

1️⃣ LLM(大语言模型)
LLM 是 LangChain 的核心组件之一,它用于与各种 大模型(如 OpenAI GPT、Anthropic Claude、DeepSeek、Llama2、Mistral 等)进行交互。LangChain 通过 LLM 接口封装了这些模型,提供统一的 API,方便开发者调用不同模型。
2️⃣ Prompt(提示词模板)
Prompt 是 LLM 生成内容的输入,LangChain 提供了 PromptTemplate 组件,使开发者可以 动态填充变量,从而构造更具适应性的提示词。例如,可以创建模板来填充用户输入,自动生成更复杂的查询。
3️⃣ Memory(记忆)
Memory 组件允许 LangChain 记住对话上下文,从而使 LLM 能够进行连续对话,而不会忘记前面提到的信息。常见的 Memory 类型包括:
- 短期记忆(会话缓冲区):存储最近的几轮对话。
- 长期记忆(向量存储):用于存储长期交互的内容,供后续调用。
4️⃣ Chains(链)
Chain 组件将多个步骤 串联 在一起,使 LLM 应用可以按照预设流程运行。例如,一个 Chain 可能包括:
- 解析用户输入
- 生成查询
- 发送查询到 LLM
- 处理 LLM 返回的结果并格式化
Chains 允许开发者组合不同的组件,使 LangChain 应用更加结构化。
5️⃣ Agents(智能体)
Agents 使 LLM 具备 自主决策能力,可以根据不同的输入动态调用不同的工具。Agent 通过 ReAct(推理 + 动作) 机制,能够:
- 分析用户问题
- 决定使用哪些工具
- 执行相应操作
- 整理最终回答
Agents 适用于需要 多步推理、调用多个工具 的场景,如 AI 助手、自动化任务处理等。
6️⃣ Tools(工具)
Tools 是 LangChain 提供的一系列 外部能力,可供 Agents 或 LLM 调用。常见的 Tools 包括:
- 计算器(执行数学运算)
- 搜索引擎(访问互联网)
- 数据库查询(从 SQL 或 NoSQL 数据库获取信息)
- API 调用(与外部 REST 或 GraphQL API 交互)
通过 Tools,LangChain 使 LLM 具备 更强的执行能力,不仅限于生成文本。
7️⃣ Retrieval(知识检索)
Retrieval 允许 LLM 访问外部知识库,从而增强知识能力(RAG,即检索增强生成)。常见的知识存储方式包括:
- 向量数据库(FAISS、ChromaDB、Pinecone)
- 文本存储(JSON、TXT、CSV)
- SQL 数据库(PostgreSQL、MySQL)
当 LLM 遇到超出其训练数据范围的问题时,可以使用 Retrieval 组件来获取额外的信息,从而提高回答的准确性。
8️⃣ Embeddings(文本嵌入)
Embeddings 是将文本转换为 向量表示 的方式,LangChain 通过 Embeddings 组件支持各种向量模型(如 OpenAI、DeepSeek、Hugging Face)。这些向量可以用于:
- 相似性搜索
- 知识库检索
- 语义分析
Embeddings 主要用于 RAG(检索增强生成) 应用场景,帮助 LLM 从数据库中找到最相关的信息。
9️⃣ Document Loaders(文档加载器)
Document Loaders 负责将各种格式的文档(PDF、TXT、Word、HTML 等)转换为 LLM 可处理的文本数据。这些数据可以进一步处理,如:
- 存入向量数据库(用于 RAG)
- 进行文本摘要
- 提取关键信息
LangChain 提供了多种预构建的文档加载器,使开发者可以轻松处理不同类型的文档。
🔹 总结
LangChain 通过多个模块将 LLM 的能力扩展到更复杂的 AI 任务,核心概念如下:
| 组件 | 作用 |
|---|---|
| LLM | 连接 OpenAI、DeepSeek、Mistral、Llama2 等大模型 |
| Prompt | 结构化管理提示词,动态填充变量 |
| Memory | 让 LLM 记住对话上下文,支持多轮对话 |
| Chains | 将多个 LLM 组件串联成完整流程 |
| Agents | 让 LLM 具备自主决策能力,调用工具完成任务 |
| Tools | 提供计算、搜索、API 调用等外部能力 |
| Retrieval | 结合向量数据库,实现知识检索 |
| Embeddings | 将文本转换为向量,用于相似性搜索 |
| Document Loaders | 处理 PDF、TXT、HTML 等文档,转换为文本数据 |
通过这些组件,LangChain 使开发者能够快速搭建智能问答、AI 助手、自动化任务处理、知识库检索等应用。 🚀
4582

被折叠的 条评论
为什么被折叠?



