【数字信号处理】第1章-时域离散信号和时域离散系统(2)

0 开始学习之前

    这个专栏主要讲《数字信号处理》的相关知识,我会不定期地更新专栏内容。这门课电子信息相关专业学生的必修课程,重要程度不言而喻!这个专栏的定位在于辅助学习,它拥有课程完整的知识结构,但它绝对无法代替学校的教学,大家可以把它当作一份笔记来学习!
    数字信号处理可以看作信号与系统的进阶版,建议有先修信号与系统的同学进行学习。需要说明一点,这个专栏主要是讲数字信号处理理论部分的内容,MATLAB部分的内容就暂时不讲了,如果对MATLAB有疑问可以联系我讨论。
    此外,推荐考西电研究生专业课含数字信号处理的同学参考学习,但请结合考纲自行评估重点来学习,不要全部都看浪费时间!
    最后,请尊重他人的劳动成果,未经作者允许禁止转载。
    配套用书:高西全-数字信号处理-西安电子科技大学出版社(第四版)。
    如有疑问,邮件是联系我最快的方式:wm_chen@yeah.net
    

4 时域离散系统的输入输出描述法——线性常系数差分方程

    描述一个系统时,可以不管系统的内部结构,将系统看成一个黑盒子,只研究系统输入和输出之间的关系,这种方法称为输入输出描述法。对于时域离散系统,用差分方程描述输入输出之间的关系。LTI系统则用线性常系数差分方程来描述。

4.1 线性常系数差分方程

    一个 N N N 阶线性常系数差分方程可以表示为: y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) (4-1) y\left( n \right) = \sum\limits_{i = 0}^M {{b_i}x\left( {n - i} \right)} - \sum\limits_{i = 1}^N {{a_i}y\left( {n - i} \right)} \tag{4-1} y(n)=i=0Mbix(ni)i=1Naiy(ni)(4-1) ∑ i = 0 N a i y ( n − i ) = ∑ i = 0 M b i x ( n − i ) 其中      a 0 = 1 (4-2) \sum\limits_{i = 0}^N {{a_i}y\left( {n - i} \right)} = \sum\limits_{i = 0}^M {{b_i}x\left( {n - i} \right)} \quad \quad \text{其中} \;\;{a_0} = 1 \tag{4-2} i=0Naiy(ni)=i=0Mbix(ni)其中a0=1(4-2)
可以看到,差分方程的阶数用方程 y ( n − i ) y(n-i) y(ni) 项中 i i i 的最大取值与最小取值之差确定。

4.2 线性常系数差分方程的求解

    已知系统的输入序列,通过求解差分方程可以求出输出序列。求解差分方程的基本方法有三种:经典解法、递推解法、 z z z 变换法。
    经典解法类似于我们在信号与系统中求解模拟系统的微分方程的方法,它包括齐次解和特解,比较麻烦,实际中很少使用。
    递推解法较为简单,适合使用计算机来求解,但是递推解法只能得到数值解,对于阶数较高的差分方程不容易得到解析解。在本章我们将使用递推解法来解差分方程。
     z z z 变换法是将差分方程变换到 z z z 域进行求解,这个方法简便有效,将放在第2章研究。
    下面用一道例题来看看如何使用递推解法来求解差分方程。
      设因果系统用差分方程 y ( n ) = a y ( n − 1 ) + x ( n ) y(n)=ay(n-1)+x(n) y(n)=ay(n1)+x(n) 描述,输入序列 x ( n ) = δ ( n ) x(n)=\delta(n) x(n)=δ(n),求输出序列 y ( n ) y(n) y(n)
    :该系统差分方程是一阶差分方程,需要一个初始条件。
    (1)设初始条件为 y ( − 1 ) = 0 y(-1)=0 y(1)=0,则递推得到:
          y ( n ) = a y ( n − 1 ) + x ( n ) y(n)=ay(n-1)+x(n) y(n)=ay(n1)+x(n)
          n = 0 n=0 n=0 时, y ( 0 ) = a y ( − 1 ) + δ ( 0 ) = 1 y(0)=ay(-1)+\delta(0)=1 y(0)=ay(1)+δ(0)=1
          n = 1 n=1 n=1 时, y ( 1 ) = a y ( 0 ) + δ ( 1 ) = a y(1)=ay(0)+\delta(1)=a y(1)=ay(0)+δ(1)=a
          n = 2 n=2 n=2 时, y ( 2 ) = a y ( 1 ) + δ ( 2 ) = a 2 y(2)=ay(1)+\delta(2)=a^2 y(2)=ay(1)+δ(2)=a2
          ⋮ \vdots
          n = n n=n n=n 时, y ( n ) = a n y(n)=a^n y(n)=an
          y ( n ) = a n u ( n ) y(n)=a^nu(n) y(n)=anu(n)
    (2)设初始条件为 y ( − 1 ) = 1 y(-1)=1 y(1)=1,则递推得到:
          n = 0 n=0 n=0 时, y ( 0 ) = a y ( − 1 ) + δ ( 0 ) = 1 + a y(0)=ay(-1)+\delta(0)=1+a y(0)=ay(1)+δ(0)=1+a
          n = 1 n=1 n=1 时, y ( 1 ) = a y ( 0 ) + δ ( 1 ) = ( 1 + a ) a y(1)=ay(0)+\delta(1)=(1+a)a y(1)=ay(0)+δ(1)=(1+a)a
          n = 2 n=2 n=2 时, y ( 2 ) = a y ( 1 ) + δ ( 2 ) = ( 1 + a ) a 2 y(2)=ay(1)+\delta(2)=(1+a)a^2 y(2)=ay(1)+δ(2)=(1+a)a2
          ⋮ \vdots
          n = n n=n n=n 时, y ( n ) = ( 1 + a ) a n y(n)=(1+a)a^n y(n)=(1+a)an
          y ( n ) = ( 1 + a ) a n u ( n ) y(n)=(1+a)a^nu(n) y(n)=(1+a)anu(n)

    通过上面这道例题可以看出,对于同一个差分方程和同一个输入信号,初始条件不同,得到的输出信号也是不同的。
    

5 模拟信号数字处理方法

    因为数字信号处理技术相对于模拟信号处理技术有许多优点,因此人们往往希望将模拟信号经过采样和量化编码形成数字信号,再采用数字信号处理技术进行处理,处理完毕后,如果需要,再转换成模拟信号。这种处理方法称为模拟信号数字处理方法。如下图所示。
模拟信号数字处理框图
    值得说明的是,本门课虽然名叫数字信号处理,但实际上不是在介绍数字信号处理技术,因为数字处理技术博大精深并且发展迅速,所涉及的范围太广,不是一两门课可以说得清楚的。这一节主要谈一下采样定理和采样恢复,也就是对应上图中 A/DC 和 D/AC 的部分。

5.1 采样定理及A/D变换

    对模拟信号 x a ( t ) x_a(t) xa(t) 进行采样可以看做一个模拟信号通过一个电子开关 S S S,开关每隔周期 T T T 合上一次,每次合上的时间为 τ ( τ ≪ T ) \tau(\tau \ll T) τ(τT),那么在开关输出端得到其采样信号 x ^ a ( t ) {\hat x_a}\left( t \right) x^a(t)。如下图所示。
电子开关模型
    这个电子开关的作用可以等效成一宽度为 τ \tau τ,周期为 T T T 的矩形脉冲串 p T ( t ) p_T(t) pT(t),采样信号 x ^ a ( t ) {\hat x_a}\left( t \right) x^a(t) 就是 x a ( t ) x_a(t) xa(t) p T ( t ) p_T(t) pT(t) 相乘的结果。如果让电子开关合上的时间 τ → 0 \tau \to 0 τ0,也就是矩形脉冲的宽度 τ → 0 \tau \to 0 τ0,此时矩形脉冲串 p T ( t ) p_T(t) pT(t) 变成了单位冲激串 p δ ( t ) p_\delta(t) pδ(t),强度为1。如下图所示。
矩形脉冲串、单位冲激串
    所以,采样的过程如下图所示。我们称下图(b)的采样过程为理想采样。
在这里插入图片描述
    其中,单位冲激串 p δ ( t ) p_\delta(t) pδ(t) 可表示为: p δ ( t ) = ∑ n = − ∞ ∞ δ ( t − n T ) (5-1) {p_\delta }\left( t \right) = \sum\limits_{n = - \infty }^\infty {\delta \left( {t - nT} \right)} \tag{5-1} pδ(t)=n=δ(tnT)(5-1)故,经理想采样得到的采样信号为: x ^ a ( t ) = x a ( t ) p δ ( t ) = ∑ n = − ∞ ∞ x a ( t ) δ ( t − n T ) = ∑ n = − ∞ ∞ x a ( n T ) δ ( t − n T ) (5-2) {\hat x_a}\left( t \right) = {x_a}\left( t \right){p_\delta }\left( t \right) = \sum\limits_{n = - \infty }^\infty {{x_a}\left( t \right)\delta \left( {t - nT} \right)} = \sum\limits_{n = - \infty }^\infty {{x_a}\left( {nT} \right)\delta \left( {t - nT} \right)} \tag{5-2} x^a(t)=xa(t)pδ(t)=n=xa(t)δ(tnT)=n=xa(nT)δ(tnT)(5-2)
    下面研究理想采样前后信号的频谱的变化,从而找出为了使采样信号能不失真地恢复原模拟信号,采样速率 F s F_s Fs F s = T − 1 F_s=T^{-1} Fs=T1)与模拟信号最高频率 f c f_c fc 之间的关系。
    信号与系统中我们学过模拟信号的傅里叶变换,我们可以得到: X a ( j Ω ) = FT [ x a ( t ) ] {X_a}\left( {j\Omega } \right) = {\text{FT}}\left[ {{x_a}\left( t \right)} \right] Xa(jΩ)=FT[xa(t)]单位冲激串 p δ ( t ) {p_\delta }\left( t \right) pδ(t) 在信号与系统中用 δ T ( t ) \delta_T(t) δT(t) 表示,它的傅里叶变换为(具体的推导见信号与系统,此处略): P δ ( j Ω ) = FT [ p δ ( t ) ] = Ω s ∑ k = − ∞ ∞ δ ( Ω − k Ω s ) (5-3) {P_\delta }\left( {j\Omega } \right) = {\text{FT}}\left[ {{p_\delta }\left( t \right)} \right] = {\Omega _s}\sum\limits_{k = - \infty }^\infty {\delta \left( {\Omega - k{\Omega _s}} \right)} \tag{5-3} Pδ(jΩ)=FT[pδ(t)]=Ωsk=δ(ΩkΩs)(5-3)其中, Ω s = 2 π T \Omega_s=\frac{2\pi}{T} Ωs=T2π,称为采样角频率。
    由傅里叶变换的频域卷积定理有: X ^ a ( j Ω ) = 1 2 π X a ( j Ω ) ∗ P δ ( j Ω ) = 1 2 π ∫ − ∞ ∞ X a ( j θ ) Ω s ∑ k = − ∞ ∞ δ ( Ω − θ − k Ω s ) d θ = 1 2 π ⋅ 2 π T ∑ k = − ∞ ∞ ∫ − ∞ ∞ X a ( j θ ) δ ( Ω − θ − k Ω s ) d θ = 1 T ∑ k = − ∞ ∞ ∫ − ∞ ∞ X a [ j ( Ω − k Ω s ) ] δ ( Ω − k Ω s − θ ) d θ = 1 T ∑ k = − ∞ ∞ X a [ j ( Ω − k Ω s ) ] (5-4) \begin{aligned} {{\hat X}_a}\left( {j\Omega } \right) &= \frac{1}{{2\pi }}{X_a}\left( {j\Omega } \right) * {P_\delta }\left( {j\Omega } \right) \\ &= \frac{1}{{2\pi }}\int_{ - \infty }^\infty {{X_a}\left( {j\theta } \right){\Omega _s}\sum\limits_{k = - \infty }^\infty {\delta \left( {\Omega - \theta - k{\Omega _s}} \right)} d\theta } \\ &= \frac{1}{{2\pi }} \cdot \frac{{2\pi }}{T}\sum\limits_{k = - \infty }^\infty {\int_{ - \infty }^\infty {{X_a}\left( {j\theta } \right)\delta \left( {\Omega - \theta - k{\Omega _s}} \right)d\theta } } \\ &= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\int_{ - \infty }^\infty {{X_a}\left[ {j\left( {\Omega - k{\Omega _s}} \right)} \right]\delta \left( {\Omega - k{\Omega _s} - \theta } \right)d\theta } } \\ &= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {{X_a}\left[ {j\left( {\Omega - k{\Omega _s}} \right)} \right]} \\ \end{aligned} \tag{5-4} X^a(jΩ)=2π1Xa(jΩ)Pδ(jΩ)=2π1Xa(jθ)Ωsk=δ(ΩθkΩs)dθ=2π1T2πk=Xa(jθ)δ(ΩθkΩs)dθ=T1k=Xa[j(ΩkΩs)]δ(ΩkΩsθ)dθ=T1k=Xa[j(ΩkΩs)](5-4)    式(5-4)表明:理想采样信号的频谱是原模拟信号的频谱以采样角频率 Ω s \Omega_s Ωs 为周期,进行周期性延拓形成的
    对于带限信号的采样及采样恢复,我们其实在信号与系统中已经详细讨论过了,这里我们就不再过多的讨论,对这块看课本不清楚的同学,可以邮件我讨论。
    这里我们直接给出结论:

  • 对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原模拟信号的频谱以采样角频率 Ω s \Omega_s Ωs 为周期,进行周期性延拓形成的;
  • 设连续信号 x a ( t ) x_a(t) xa(t) 是带限信号,最高截止频率为 Ω c \Omega_c Ωc,如果采样角频率 Ω s ≥ 2 Ω c \Omega_s \ge 2\Omega_c Ωs2Ωc,那么让采样信号 x ^ a ( t ) {\hat x_a}\left( t \right) x^a(t) 通过一个增益为 T T T、截止频率为 Ω s = 2 π / T \Omega_s=2\pi /T Ωs=2π/T 的理想低通滤波器,可以唯一地恢复出原模拟信号 x a ( t ) x_a(t) xa(t)。否则, Ω s < 2 Ω c \Omega_s<2\Omega_c Ωs<2Ωc 会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。

传送门

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值