数据分析常见方法及模型分类

本文介绍了数据分析的基础知识,包括对比分析、相关分析、分类分析和综合分析四大类。对比分析涉及单一和多指标对比;相关分析包含回归分析、时间序列分析、敏感性分析和因子分析;分类分析涵盖聚类分析和判别分析;综合分析则有概率分析、财务分析、KANO模型和PSM模型等。这些方法有助于新手选择合适的数据分析工具。
摘要由CSDN通过智能技术生成

今天跟大家分享一下比较常见的数据分析方法以及模型分类。

在工作中,有很多的数据分析方法和模型,但是对于新入门的人来说,可能不能够一下子就找到合适的数据分析方法以及模型,进而影响到工作的进度。所以今天小白就来给大家介绍一些比较常见的数据分析方法以及模型的分类。

一般来说,我们可以将数据分析方法分为对比分析、相关分析、分类分析以及综合分析四类,其中前三类主要是以定性的数据分析方法和模型为主,而对于第四类来说就是比较注重定性与定量相结合。

对比分析

通常情况下,对比分析是把两个相互之间有联系的指标数据拿来进行比较。一般来说,按分析对象的不同可以分成单一指标对比分析和多指标对比分析两种。举个例子,单一指标对比分析也就是简单评价,像常见的盈亏平衡分析,主要是通过观察盈亏平衡点的高低,从而对风险的高低做出判断。而多指标对比分析也就是综合评价。

相关分析

相关分析是用来研究变量之间相互关系的一种常见分析方法。对于相关分析,也是分为两类,一类是为了明确自变量与因变量之间的关系而进行分析,例如回归分析、时间序列分析以及敏感性分析。另一类只是单纯研究变量相互之间的相关关系,例如因子分析。

敏感性分析是用来研究某一个因素发生变化时对另外一个或多个因素影响程度的分析方法;

回归分析是用来确定两种及以上变量之间定量关系的一种分析方法;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值