【011】pandas处理数据的作用_#py

1. 导入数据库

# 定义空白的数据库,便于存储数据
df1 = []
df1 = pd.DataFrame(df1)
## 或者
df1= pd.DataFrame([])

# 数组全转为数据库内容,不设置首行
df2= [['a', 'b'], [1, 3], [2, 4]]
df2= pd.DataFrame(df2)

# 数组转为数据库内容,并第一行为列名
df3= [['a', 'b'], [1, 3], [2, 4]]
df3 = pd.DataFrame(df3[1:], columns=value[0])

# 数组转为数据库内容,并第一列为行名(设置这一步操作,必须要有列号,因此需在上基础上进行)
# set_index 内容为首行内 想让哪一列作为行号的名称
df4 = [['a', 'b'], [1, 3], [2, 4]]
df4 = pd.DataFrame(df4 [1:], columns=value[0]).set_index('b')

上面导入数组的结果如下:

df1df2df3df4
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

2. 修改行列名

2.1 修改列名

columns的内容,修改前后的

# 在原数据上修改列名,以inplace设置的True为准
df3.rename(columns={'a': ' ', "b": 1}, inplace=True)
# 基于原数据上修改列名赋予新数据,原数据不变,以inplace设置的False为准
df5 = df3.rename(columns={'a': ' ', "b": 1}, inplace=False)

在这里插入图片描述

2.2 修改行名

# 重建列名且从0开始
# drop=True 表示删除原来的索引,drop=False 表示保留原来的行号作为一列,重新建立一个行号
df6 = df4.reset_index(drop=True)
df7 = df4.reset_index(drop=False)

如下:

drop=Truedrop=False
在这里插入图片描述在这里插入图片描述

3. 按条件筛选

3.1 根据条件筛选,提取所有信息

# 筛选出同时满足 a列和 b列的值的内容,并赋予新表
df8= df3[(df3['a'] == 2) & (table['b'] == 4)]

3.2 根据条件筛选,提取某列或者某几列

# 筛选出同时满足 a列和 b列的值的内容,提取 a列(只能提取一列)
df8= df3[(df3['a'] == 2) & (table['b'] == 4)]['a']
# 筛选出同时满足 a列和 b列的值的内容,提取 a列和 b列(可以提取多列)
df8= df3.loc[((df3['a'] == 2) & (table['b'] == 4)), ["a", "b"]]

4. 按某行某列提取信息

4.1 获取信息

先确定列,再确定行号。用 iloc 确定行号

content = df3["a"].iloc[0]

4.2 更改具体的值

df3["a"].iloc[0] = 3

5. 合并

5.1 单列并入大数据中(方法一)

# 设置单列数据
df = pd.DataFrame({'a': [1, 2]})
df3.insert(loc=0, column=str(soc), value=df, allow_duplicates=True)

将 df 插入 df3 的首列中

其各个含义如下:

loccolumnvalueallow_duplicates
表示插入第几列对插入的列名重命名插入的列内容允许出现重复的行名

5.2 多列并入大数据中

单列也可以如下进行合并,但必须行号相同。

df3 = pd.concat([df3, df3[["a", "b"]]], axis=1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木易:_/

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值