CV
weixin_37684437
这个作者很懒,什么都没留下…
展开
-
运动恢复结构(SFM)+欧式结构恢复+仿射结构恢复+透视结构恢复+捆绑调节法(BA)
运动恢复结构(SFM)structure from motion运动恢复结构很多张图到三维结构欧式结构恢复但是还是存在尺度差异:所以需要先验信息!!仿射结构恢复仿射和透射的区别观测矩阵D将D分解成M和S做奇异值分解相机m和点数n的约束关系歧义性透视结构恢复转换成求M1*,M2*,Xj*使F跟AB挂钩捆绑调节法(BA: Bound Ajustment)D是距离...原创 2020-08-30 00:43:25 · 1384 阅读 · 1 评论 -
摄像机标定+三维重建基础+极几何+本质矩阵E+基础矩阵F+归一化八点法
摄像机标定结论三维重建基础l叉乘l’得到的点,就是交点极集合 (p和p’的关系)l和l’是极线,e是极点所有极线都会相交于极点p的投影肯定在对面l’线上1. 本质矩阵极几何约束由公式得到极线的方程2. 基础矩阵不一定都是规范化摄像机基础矩阵估计再做奇异值分解,把最小的s3设为0...原创 2020-08-27 11:36:54 · 773 阅读 · 3 评论 -
三维重建-摄像机模型+摄像机标定(上)
三维重建-摄像机模型摄像机原理:小孔成像映射:三维到二维光圈大小的影响:解决:增加透镜!!1.透镜:透镜的问题:失焦,景深(清晰的部分),畸变xy加上Cx和Cy将坐标移到中心把米单位转换为像素如何把坐标对应关系变成线性的呢? 用到齐次坐标,得到的P’是齐次坐标(3X1),再转到欧式(2X1),θ是偏移...原创 2020-08-22 12:45:00 · 477 阅读 · 0 评论 -
Viola-Jones人脸检测(Boosting)+行人检测(HOG)
目标检测Viola-Jones1.boosting算法添加链接描述原创 2020-08-21 14:59:47 · 272 阅读 · 0 评论 -
识别+生成模型和判别模型+词袋模型
识别主要任务:贝叶斯定理: 后验概率,似然,先验生成模型和判别模型生成模型(贝叶斯模型):自己先能画出具体对象,画的越像识别率越高(只需判断是否是张三,不需要有对立面)。似然和先验(下图),大于一则为斑马判别模型:有对立面(只需要知道张三李四的差异).后验(直接点,不需要似然和先验)LearningRecognition检测遇到的问题回到问题:词袋模型(Bag of feature model):图像表示成向量(x:序号,y:出现的频率)BOF(Bag of fea原创 2020-08-20 13:50:12 · 246 阅读 · 0 评论 -
分割+K-Means+Mean shift+Normalized Cut
分割分割目的:无监督,至低向上1.聚类效果:语义分割:增加维度区分辣椒AB(缺点:把背景给分了)用k-means的优缺点Mean shift:计算区域重心,找到密度最大的点,设置为圆心,然后对每个像素进行归类,离哪个近就归哪一个类三维:RGB优缺点:把分割任务看成一个图Graphs Cut权重:相似性每个像素间的连线权重低的(相识度低的),连线断开,相同的像素在一个segment里如何计算权重?(相似性):dist是距离:可以通过RGB计算L2距离等等原创 2020-08-19 23:01:37 · 535 阅读 · 0 评论 -
(SIFT特征)拉普拉斯响应对于拍照角度变换,旋转,光照的处理方式+纹理Texture(卷积核组)
SIFT特征尺度不变性拉普拉斯相应(Blob)的特性:对于拍照角度变换的处理方式:先计算每个点的梯度值,再计算M,从而得到特征值。判断λ1和λ2是否相等,否则压缩小的那个方向,再计算M值,直到λ1等于λ2旋转问题?找到梯度变换最大的梯度方向,如何转到0度(θ度)光照问题?描述符提取:划分4x4格子,做梯度直方图(量化角度:0~180)(因为梯度变化不大),再比较像素中的梯度直方图提取特征与数据库的特征相比较,计算是否匹配(梯度直方图比较)通过比较第一近邻和第二近邻的值来确原创 2020-08-19 17:34:10 · 506 阅读 · 0 评论 -
Blob detection+高斯二阶导(拉普拉斯模板)+尺度的选择+加快速度(DoG+分层处理)
Blob detection高斯二阶导找最大相应保持面积不变,信号不衰减高斯二阶导遇到的问题:信号衰减(权重模板)找到最小值,它的信号就是跟8有关的二阶拉普拉斯模板找这个0平面尺度的选择R和方差的关系:完全对齐的时候相应才会得到最大值每个点都要进行判断,最后做最大化抑制...原创 2020-08-19 14:08:41 · 2043 阅读 · 1 评论 -
局部特征+角点+如何判断+(M/λ/R)+椭圆可视化的意义+Harris检测器:检测角点和一些不变性
局部特征在全景拼接上特征点的特性角点(窗体四个方向移动像素会变)uv是移动量,E是平移uv下与与原点的差异,通过E判断是否是角点因为uv和E之间的关系太复杂,所以用泰勒展开式:计算得到转换为计算M的特征值,越大,他就是角点R是旋转矩阵,即使角点的线不是水平垂直方向,R可以使它旋转!!R的逆矩阵=R的转置λ越大,变化越大。椭圆中沿短轴变化快,长轴变化慢椭圆可视化的意义M的特征向量的意义:通过λ来判断直接通过R来判断Harris检测器:检测角点原创 2020-08-17 21:59:05 · 223 阅读 · 1 评论 -
RANSAC算法+RANSAC在指纹识别的应用+Fitting(The Hough Transform)+圆的霍夫变换
实际上做完RANSAC后 还要进行LSRANSAC在指纹识别的应用(分别代表:指纹分差,拐弯,结尾)随机找三个对应点,计算矩阵T:abcdef,再用T计算所有点,看对应成功的点有多少个(设置门限),进行投票Fitting(The Hough Transform)霍夫变换的思想:投票策略遇到的问题:用极坐标系...原创 2020-08-17 16:31:19 · 437 阅读 · 0 评论 -
边缘检测的模板+高斯偏导核+Canny 边缘检测+Fitting拟合(最小二乘法LS)
边缘检测的模板噪声的影响+如何解决(高斯偏导核)先卷积平滑,后求导,检测边缘先将高斯核求偏导,再做卷积去噪,检测边缘白的权值越大,黑越小(负数)西格玛的影响高斯核对比高斯偏导核:目标和意义Canny 边缘检测1.用xy方向的filter去求xy方向的梯度值,再先求幅值,同时找到梯度方向2(这步要改).设置阈值去噪,后遇到的问题? 边缘太粗了3.非最大化抑制,如果rp不在整数点上就用双线性插值,以四周的点加权求和门限设置太高,脖子的边缘去掉了,怎么办?双门限法:原创 2020-08-15 11:41:45 · 1824 阅读 · 1 评论 -
锐化+高斯模糊+噪声+边缘检测(上)
锐化高斯模糊西格玛和kernel 共同 决定平滑的程度,越大越模糊用勾股定理求得噪声高斯噪声如何解决椒盐和白噪声(中值滤波)椒盐和高斯处理椒盐噪声对比原创 2020-08-13 19:38:00 · 642 阅读 · 0 评论