每周一文(六)Facebook EBR向量召回模型

本文探讨了向量级别召回模型的来源,重点在于样本构造和模型设计。正样本采用概率抽样策略,避免热门item过度影响模型。负样本分为easynegative和hardnegative,前者为模型易于识别的负例,后者则更具挑战性。模型融合策略包括并行和串行方式。曝光未点击样本并不适合用于负样本,因为它们可能只是用户未偏好而非不喜欢。

契机

从样本和模型两方面来介绍向量级别召回模型的由来。提出很有建设性的工业级别的参考价值。

样本角度

有监督的二分类模型需要构建正负样本,正样本的选择不管是召回和排序来说都是一致的,即用户有显式的点击行为的样本为正样本。而对于召回模型(甚至对于粗排模型)来说,负样本的选择至关重要,如下会介绍正样本的构建方法和两种级别的负样本构建方法。

正样本抽样

有些item在用户显式点击反馈中出现的次数过高,这会导致召回模型会被这些item绑架,因而需要对用户显式点击反馈中的item进行抽样,被抽到的概率为如下公式,其中 Z ( w i ) Z(w_i) Z(wi)代表item在整个item库中出现的频次。

P p o s = ( Z ( w i ) 0.001 + 1 ) 0.001 Z ( w i ) P_{pos}=(\sqrt{\frac{Z(w_i)}{0.001}}+1)\frac{0.001}{Z(w_i)} Ppos=(0.001<

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值