推荐算法炼丹笔记:做向量召回 All You Need is 双塔

本文介绍了双塔模型在推荐系统中的应用,如DSSM、YouTube双塔、EBR和莫比乌斯模型。双塔模型因其在线计算用户向量和离线计算物品向量的能力,适合用于实时召回。重点讨论了YouTube双塔的训练挑战和EBR的硬负样本挖掘与嵌入融合策略。这些模型在处理大规模数据时展现了优势,但同时也面临负样本采样偏见和性能挑战。
摘要由CSDN通过智能技术生成

v2-071e132c7353c2be34deb925be1bf617_b.jpg
作者:十方,公众号:炼丹笔记

对于基于向量召回,那就不得不提到双塔。为什么双塔在工业界这么常用?双塔上线有多方便,真的是谁用谁知道,user塔做在线serving,item塔离线计算embeding建索引,推到线上即可。下面我就给大家介绍一些经典的双塔模型,快速带大家过一遍,如果想了解细节,强烈建议看论文。

DSSM

v2-657bdca4afb4e7ced04d7107a8a0df22_b.jpg

先说双塔模型的鼻祖,这是微软在CIKM2013发表的一篇工作,它主要是用来解决NLP领域语义相似度任务的。word hashing真的是DSSM的骚操作了,不同于现有的RNN,Bert等模型,该方法直接把文本映射成了远低于vocab size的向量中,然后输入DNN,输出得到一个128维的低维语义向量。Qu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值