数学(八)概率分布

均匀分布

离散

假设X有K个取值 x 1 , x 2 , . . . , x K x_1, x_2, ..., x_K x1,x2,...,xK,概率密度函数为如下公式:

P ( X = x i ) = 1 K i = 1 , 2 , . . . , K P(X=x_i)=\frac{1}{K} \quad i = 1, 2, ..., K P(X=xi)=K1i=1,2,...,K

连续

x在 [ a , b ] [a,b] [a,b]上的概率密度函数为如下公式:
{ 1 b − a  if  a ≤ x ≤ b 0  otherwise  \begin{cases} \frac{1}{b-a} & \text{ if } a \leq x \leq b \\ 0 & \text{ otherwise } \end{cases} {ba10 if axb otherwise 

伯努利分布

参数为p,随机变量x的取值为{0, 1},概率密度函数为如下公式,类似于抛一次硬币正面朝上的概率,期望为p,方差为p(1-p)。

f ( x ) = p x ( 1 − p ) ( 1 − x ) f(x)=p^x(1-p)^{(1-x)} f(x)=px(1p)(1x)

二项分布

参数为p,随机变量x的取值为{0, 1},实验重复n次成功x次的概率为如下公式,期望为np,方差为np(1-p)。

f ( x ) = C n x p x ( 1 − p ) ( 1 − x ) f(x)=C_n^x p^x(1-p)^{(1-x)} f(x)=Cnxpx(1p)(1x)

正太分布

随机抽中数值类特征x的具体取值的概率密度函数为:

f ( x ) = 1 2 π σ e − ( x − μ ) 2 / 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi} \sigma}e^{-(x-\mu)^2/2\sigma^2} f(x)=2π σ1e(xμ)2/2σ2

中心极限定理:对于若干个独立同分布的变量 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn,其加和的平均值服从正太分布,其核心思想是抽样组数多到一定程度上统计出的数值接近整体数值,具体可以见这里

beta分布

x的概率密度函数为:

f ( x ; α , β ) = x α − 1 ( 1 − x ) β − 1 ∫ 0 1 u α − 1 ( 1 − u ) β − 1 d u f(x;\alpha, \beta)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_{0}^{1}u^{\alpha-1}(1-u)^{\beta-1}du} f(x;α,β)=01uα1(1u)β1duxα1(1x)β1

参考

  1. 中心极限定理的通俗介绍
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值