shu_qyc
码龄12年
关注
提问 私信
  • 博客:92,477
    社区:179
    92,656
    总访问量
  • 47
    原创
  • 1,455,626
    排名
  • 14
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2012-12-28
博客简介:

qyczyr的专栏

查看详细资料
个人成就
  • 获得12次点赞
  • 内容获得6次评论
  • 获得65次收藏
创作历程
  • 10篇
    2017年
  • 10篇
    2016年
  • 20篇
    2015年
  • 30篇
    2014年
成就勋章
TA的专栏
  • qt程序
    5篇
  • Linux
    12篇
  • opencv
    7篇
  • 流媒体编程学习
    9篇
  • 数据结构与算法
    6篇
  • 机器学习
    6篇
  • 机器学习基础学习
    2篇
  • Cpp学习
    1篇
  • Slam
    2篇
  • Ros
    1篇
  • caffe学习笔记
    6篇
  • 人脸检测
  • tensorflow
    1篇
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

return _message.default_pool.FindFieldByName(full_name) KeyError: "Couldn't find field google.pr

return _message.default_pool.FindFieldByName(full_name)KeyError: "Couldn't find field google.protobuf.FileOptions.javanano_use_deprecated_package"解决:pip install --force-reinstall --upgrade p
原创
发布博客 2017.07.13 ·
3639 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

(一)安装tensorflow

环境: ubuntu16.04 GTX10501. 安装cuda8.0下载地址:https://developer.nvidia.com/cuda-downloads(1)按 ctrl+alt+F1 进入tty, 登录tty后输入如下命令sudo service lightdm stop该命令会关闭lightdm。(2)屏蔽集显sudo vim /etc/modprobe.d/blacklist.c
原创
发布博客 2017.07.13 ·
422 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

git clone错误

问题:warning: http.proxy has multiple values方法:git config --global --unset-all  http.proxy成功:Cloning into 'kmeans'...remote: Counting objects: 7, done.remote: Total 7 (delta 0), reused 0
原创
发布博客 2017.07.07 ·
1854 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

win10_ubuntu1604_caffe安装

1. 安装双系统本人电脑是(惠普(HP)暗影精灵II代Pro 精灵绿 15.6英寸游戏笔记本(i7-7700HQ 8G 128GSSD+1T GTX1050Ti 4G独显 IPS FHD), 电脑默认安装win10在ssd上,因为需要跑深度学习所以安装Ubuntu16.04.(14.04出错)(1)用ultraiso制作U盘启动盘,然后进行安装。 安装比较简单,就是需要注意的是
原创
发布博客 2017.06.21 ·
1070 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

caffe softmax源码解读

前向传播template <typename Dtype>void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtyp
原创
发布博客 2017.06.08 ·
554 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

caffe中的优化方法

参考网址: http://sebastianruder.com/optimizing-gradient-descent/index.html#gradientdescentvariants http://caffe.berkeleyvision.org/tutorial/solver.html 在caffe中实现了六种优化方法,如下:Stochastic Gradient Descent (
原创
发布博客 2017.06.01 ·
2002 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

使用LibJpeg图像解码

1 简介libjpeg一个图片解码库,在项目中需要读入图片,但不想依赖opencv的接口,这时可以libjpeg完成解码。libjpeg有两个版本,一个时原装的libjpeg,另一个则是libjpeg-turbo,这是一个使用 SIMD指令加速的解码库,大约是libjpeg的3倍的速度,代码参见 https://github.com/libjpeg-turbo/libjpeg-turbo2 编译下
原创
发布博客 2017.05.12 ·
1052 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(二)caffe 网络训练执行流程

暂时提交 caffe训练网络的执行脚本如下(例如运行lenet)./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototx在Qt中运行的时候,参考http://blog.csdn.net/qyczyr/article/details/70216300程序执行入口啊在src/caffe/tools/caffe.cpp
原创
发布博客 2017.04.24 ·
433 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Qt单步调试caffe

Qt caffe单步调试(1) 打开Qt,导入CakeList.txt进去,如图所示: (2) 在Projects左边的菜单栏下,设置工作目录,以及运行的程序和参数,如下: (3)点击运行或者Debug进行调试,运行mnist,需提前下载好mnist数据
原创
发布博客 2017.04.17 ·
1145 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

使用cifar10训练

使用cifar10训练1. 参数设置net: "examples/cifar10/cifar10_quick_train_test.prototxt" #训练和测试网络的配置文件test_iter: 100 #进行一次测试需要的迭代次数,因为测试时,batch为100,一共10000张测试图片所以此处为100test_interval: 500 #测试间隔base_lr: 0.001 #基础学
原创
发布博客 2017.04.13 ·
1267 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

使用qt开发ros

1. 安装qt2. 导入catkin_ws下src下的CMakeList文件
原创
发布博客 2016.12.13 ·
514 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

rgbdv2 slam安装

运行环境: ubuntu14.04 ros版本: indigo一. 安装srgbdV2 slam1. 创建catkin工作空间:这里为rgbdslam单独创建一个catkin工作空间。#首先新建文件夹mkdir -p src#进入新建的文件夹cd ~/rgbdslam_catkin_ws/src#将其初始化为catkin工作空间的源码存放文件夹
原创
发布博客 2016.12.13 ·
743 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

gmapping和rtab-map slam对比

gampping算法和rtab-map slam算法对比很开心最近有机会对比slam算法。gmappinggmapping算法是通过粒子滤波的方法实现,这种方法一般需要大量的粒子来获取好的结果,但这必会引入计算的复杂度;粒子是一个依据过程的观测逐渐更新权重与收敛的过程,这种重采样的过程必然会代入粒子耗散问题(depletion problem), 大权重粒子显著,小权重粒子会消失(有可能正确的粒
原创
发布博客 2016.12.04 ·
7062 阅读 ·
2 点赞 ·
5 评论 ·
14 收藏

boost

一.准备 学习网址: https://class.coursera.org/ntumltwo-002/lecture二.课程内容2.1复习 上一讲主要讲解了blending and bagging。blending的主要思想是为了把我们手上的小区合并成一个大区,可以通过uniform,no-uniform的方法进行投票,如果我们手上还没有一堆小区,可以通过bootstrapping来反复产生
原创
发布博客 2016.12.04 ·
315 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(1)控制turtlebot 1代行走

为了自主控制turtlebot的行走,我们需要在代码中实现。一.准备 在这个过程中,我们需要知道向哪一个主题发送消息。网上说是cmd_vel,但是我尝试并未成功。我们可以使用rostopic list,查看当前输出活动主题的列表。我们可以看到/cmd_vel_mux/input/teleop就是我们需要的,代码如下: young@young-Lenovo:~$ rostopic list
原创
发布博客 2016.11.17 ·
1842 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

W311M2 ubuntu安装驱动

1. 进入到驱动包中2. make3. sudo make install
原创
发布博客 2016.11.16 ·
1499 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AHRS(航姿参考系统)和IMU(惯性测量单元)的区别【转】

刚开始的时候我总是搞不清楚AHRS和 IMU的区别。。不知道这有什么区别。。后来慢慢的慢慢的,我理解了~AHRS 俗称航姿参考系统,AHRS由加速度计,磁场计,陀螺仪构成,AHRS的真正参考来自于地球的重力场和地球的磁场~~他的静态终精度取决于对磁场的测量精度和对重力的测量精度 ,而则陀螺决定了他的动态性能。  这就是AHRS~在这种前提下。说明AHRS离开了地球这种有重力和磁场环境的时候是没法正常
转载
发布博客 2016.11.09 ·
1590 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

贝叶斯理论

1.贝叶斯法则机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。2.先验概率和后验概率用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验
转载
发布博客 2016.10.31 ·
578 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

C++ endl和\n的区别

c++ endl是一个操作符,效果是结束当前行,并刷新缓冲区。如果仅因为缓冲区没有刷新,程序员将浪费大量的时间跟踪调试并没有执行的代码,基于这个原因,输出时应多使用endl而非’
’,使用endl不会担心程序崩溃时输出是否悬而未决(即还留在缓冲区中,未输出到设备中)。
原创
发布博客 2016.10.20 ·
648 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

值得推荐的C/C++框架和库 (真的很强大)

值得学习的C语言开源项目- 1. WebbenchWebbench是一个在linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的性能,最多可以模拟3万个并发连接去测试网站的负载能力。Webbench使用C语言编写, 代码实在太简洁,源码加起来不到600行。下载链接:http://home.tiscali.cz/
转载
发布博客 2016.02.15 ·
1033 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多