PyTorch深度学习训练可视化工具tensorboardX

PyTorch


Author:Iouwill

Machine Learning Lab

     之前笔者提到了PyTorch的专属可视化工具visdom,参看PyTorch深度学习训练可视化工具visdom。但在此之前很多TensorFlow用户更习惯于使用TensorBoard来进行训练的可视化展示。为了能让PyTorch用户也能用上TensorBoard,有开发者提供了PyTorch版本的TensorBoard,也就是tensorboardX。

安装与启动

     熟悉TensorBoard的用户可以无缝对接到tensorboardX,安装方式为:

pip install tensorboardX

     除了要安装PyTorch之外,还需要安装TensorFlow。跟TensorBoard一样,tensorboardX也支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve,video等不同类型对象的可视化展示方式。

tensorboardX和TensorBoard的启动方式一样,直接在终端下运行:

tensorboard --logdir runs

     然后另起一个终端执行Python文件即可:

python demo.py

     打开localhost:6006即可看到tensorboardX可视化界面。

     tensorboardX本地启动非常容易,但一般情况下我们训练都是在服务器上完成的, 所以要在远程启动tensorboardX需要进行一些简单的设置。以虚拟机工具xshell为例:依此设置文件->属性->ssh->隧道->添加,类型local,源主机填127.0.0.1(本机),端口设置一个,比如12345,目标主机为服务器地址,目标端口一般是6006,如果6006被占了可以改为其他端口。



     分别执行tensorboard和python脚本后,本地打开127.0.0.1:12345即可进入远程TensorBoard界面。

使用示例

     以scalar为例来看一下tensorboardX的使用方式:

import numpy as np
from tensorboardX import SummaryWriter
writer = SummaryWriter()
for i in range(100):
    writer.add_scalar('data/scalar1', np.random.rand(), i)
    writer.add_scalar('data/scalar2', {'xsinx': i*np.sin(i), 'xcosx': i*np.cos(i)}, i)
writer.close()

     scalar可视化如下图所示。

     一个完整tensorboardX 使用demo如下:

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter


resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]


for n_iter in range(100):


    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)


    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)


    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)


        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)


        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)


        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)


        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)


dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]


features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))


# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

可视化效果如下所示:

  参考资料:

https://github.com/lanpa/tensorboardX

https://www.tensorflow.org/tensorboard

往期精彩:

PyTorch数据Pipeline标准化代码模板

PyTorch深度学习训练可视化工具visdom

深度学习100问-13:深度学习如何制作个人数据集?

深度学习100问-12:深度学习有哪些经典数据集?

深度学习100问-11:什么是学习率衰减?

深度学习100问-10:如何部署一个轻量级的深度学习项目?

深度学习100问-9:为什么EfficientNet号称是最好的分类网络?

深度学习100问-8:什么是Batch Normalization?

深度学习100问-7:dropout有哪些细节问题?

深度学习100问-6:有哪些经典的卷积类型?

深度学习100问-5:如何阅读一份深度学习项目代码?

深度学习100问-4:深度学习应遵循怎样的论文研读路线?

深度学习100问-3:深度学习应掌握哪些Linux开发技术?

深度学习100问-2:深度学习应掌握哪些Git开发技术?

深度学习100问-1:深度学习环境配置有哪些坑?


一个算法工程师的成长之路

长按二维码.关注机器学习实验室

发布了148 篇原创文章 · 获赞 4 · 访问量 1692
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览