安装torch-gpu的时候,按照其他人的pip安装,经常不成功,所以直接用whl安装,可能不需要额外安装cudnn与cuda,cuda可能是电脑自带的,cudnn好像会跟torch一起被安装。
今天准备自己处理一下数据,数据量1G以上,所以需要用jupyter,我运行了一下conda install jupyter就崩溃了,尝试了很久没法回复,所以从头安装一下,整个过程记录如下:
- 新建py36环境
conda create -n torch_jupyter python=3.6
- 安装pandas等必要的库;随后安装jupyter notebook,注意使用:
conda install jupyter notebook
,要写全,不然有可能安装不完全 - 去这个网站 下载whl下载对应的python版本、cuda版本与硬件版本,例如我的电脑是cuda9.2,python是3.6,windows64位,就需要下载:cu92/torch-1.4.0%2Bcu92-cp36-cp36m-win_amd64.whl 和 cu92/torchvision-0.5.0%2Bcu92-cp36-cp36m-win_amd64.whl。
- pip install ‘xx.whl’单引号中写地址,用\分割路径。
- 使用的时候,可以按照jupyter的方式使用,也可以用pycharm。pycharm中,新建一个notebook文件,然后点击绿色的箭头即可运行。
我的电脑里cuda是默认自带的,安装torch的时候,也会随机安装一个cudatoolkit包,貌似是有了这个包,就不用安装cudnn了,感觉快很多。