【论文阅读笔记】——GMNN: Graph Markov Neural Networks

ICML2019《GMNN: Graph Markov Neural Networks》 by Meng Qu, Yoshua Bengio, Jian Tang,GNN工作的又一创新,将统计关系学习(SRL)和图神经网络(GNN)结合,该方法适用于图节点分类、节点关系分类,以及无监督的节点表示学习任务。原文地址:https://arxiv.org/abs/1905.06214v1引言现实社会...
摘要由CSDN通过智能技术生成

ICML2019《GMNN: Graph Markov Neural Networks》 by Meng Qu, Yoshua Bengio, Jian Tang,GNN工作的又一创新,将统计关系学习(SRL)和图神经网络(GNN)结合,该方法适用于图节点分类、节点关系分类,以及无监督的节点表示学习任务。原文地址:https://arxiv.org/abs/1905.06214v1

引言

现实社会的网络中,实体可以被看做一个个的网络节点(在统计关系学习中记作objects/对象,在图中记作节点/nodes),实体的类别可以被看做网络节点的标签(labels),同时每个节点会存在一系列的属性,我们把它们记作features或attributes。当我们为节点做分类任务时,我们通常会以节点的特征为重心,将特征向量送入分类器做训练,但我们同时要考虑两个点:

  1. 邻居节点同质性:相连的节点类别趋近相同
  2. 标签依赖关系:某些标签更有可能同时出现。如,篮球和NBA可能会是相邻节点,飞机和牛奶很难产生关系等

传统的关于关系数据建模的方法主要跟从两个工作:统计关系学习SRL(如关系马尔科夫网络等)和图神经网络GNN(如GCN等)。

SRL:统计关系学习,通常利用条件随机场CRF来对节点标签依赖关系进行建模。

  • 优点:CRF可以学习到节点标签之间的联合分布。
  • 缺点:需要手工定义特征函数进行一系列的线性组合来组成势函数,通常这些特征函数都是启发式的,也就是特征需要人工定义,表达能力有限。再一个,网络中的节点关系结构非常复杂,计算节点标签之间的后验分布十分困难。

GNN: 图神经网络通过非线性的神经元架构来学习到节点的特征表示,整个网络进行端到端的分类,目前的GCN和GAT两个主要模型都达到了非常好的效果。

  • 优点:强大的特征表达能力,考虑到网络节点的邻接关系。
  • 缺点:忽略了标签之间的依赖关系,训练时将节点标签独立地进行预测。

作者由此提出GMNN:Graph Markov Neural Networks,将两者的优点结合在一起:利用CRF学习标签的联合分布,通过伪似然变分pseudolikelihood variational EM算法进行更新迭代:

  • M-step:通过GNN学习节点的特征表示,得到更新后的的参数来最大化pseudolikelihood;
  • E-step:对节点标签的局部条件分布进行建模,推断未标注节点的标签。

问题

考虑半监督学习中的一个图G=(V,E,

  • 9
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值