线性代数_1、二阶、三阶行列式、排列、逆序

本文详细介绍了行列式的定义与计算方法,包括二阶和三阶行列式的运算表达式。同时,阐述了排列的概念,如逆序、逆序数以及奇偶排列的判断。还探讨了排列的对换性质,即奇数次对换产生奇排列,偶数次对换保持排列性质不变。这些理论在数学和信息技术领域有着广泛应用。

一、二阶行列式

  • 定义
    • 2行2列共4个元素 aij\ a_{ij} aij,其中i表示行标,j表示列标
  • 运算表达式:
    • [a11a12a21a22]\begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix}[a11a21a12a22] =  a11\ a_{11} a11  a22\ a_{22} a22 -  a21\ a_{21} a21  a12\ a_{12} a12

二、三阶行列式

  • 定义
    • 3行3列共9个元素
  • 运算表达式
    • [a11a12a13a21a22a23a31a32a33]\begin{bmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\end{bmatrix}a11a21a31a12a22a32a13a23a33 =  a11\ a_{11} a11  a22\ a_{22} a22 a33\ a_{33} a33 +  a12\ a_{12} a12 a23\ a_{23} a23 a31\ a_{31} a31+  a13\ a_{13} a13 a21\ a_{21} a21 a32\ a_{32} a32- a13\ a_{13} a13 a22\ a_{22} a22 a31\ a_{31} a31 - a12\ a_{12} a12 a21\ a_{21} a21 a33\ a_{33} a33 - a11\ a_{11} a11 a23\ a_{23} a23 a32\ a_{32} a32
    • 计算过程:
      在这里插入图片描述

三、排列

1、排列

  • 定义:
    • 由 1,2,3,…,n 组成的一个有序数组,叫做n级排列
    • 注意: 3145是一个排列吗?不是,中间缺一个2,中间缺了数字的不叫排列
  • 例子:
    • 1234:4级排列
    • n级排列方式:n ( n − 1 ) . . . 3 ∗ 2 ∗ 1 = n ! n(n-1)…321 = n!n(n−1)…3∗2∗1=n!

2、逆序

  • 比较大的数排在了较小数的前面,比如:4213

3、逆序数

  • 定义:
    • 逆序的总数,数逆序数是要从第一个数开始数后面有几个比其小的,切记顺序,不能乱来,用 N() 表示
  • 例子:
    • N(4213)=3+1=4; 解释:4213,4后面有3个比其小的数,2后面有1个,1后面没有,所以总共有4个

4、奇/偶排列

  • 定义:
    • 如果逆序数的为奇数就是奇排列,是偶数就是偶排列

5、扩展

  • 标准排列(自然排列):
    • N ( 1 , 2 , 3 , . . . , n ) = 0
  • 倒序排列:
    • N ( n , n − 1 , . . . , 3 , 2 , 1 ) = n(n−1)2\frac{n(n-1)}{2}2n(n1)
  • 对换:
    • 交换两个数
    • N(54123)=4+3+0=7 奇排列
    • 1和2对换 N ( 54213 ) = 4+3+1=8 偶排列
  • 如果一个排列做奇次性对换,性质发生改变;如果是偶次性对换,性质不变,也就是‘奇变偶不变’
  • 在n级排列中,奇排列和偶排列各占n!2\frac{n!}{2}2n
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值