3、Bresenham算法
Bresenham算法是计算机图形学领域使用最广发的直线扫描转换算法。假定直线斜率在0~1之间,该方法类似于中点法,由一个误差项符号决定下一个像素点。
算法原理:过各行各列像素中心构造一组虚拟额网络线,按直线从起点到终点的顺序计算直线与各垂直网格线的交点,然后确定该列像素中与此交点最近的像素。该算法的巧妙之处在于采用增量计算,使得对于每一列,只要检查一个误差项的符号,就可以确定该列的所求像素。
(1)假定直线斜率k在0~1之间:从左到右
如图所示,设直线方程为yi+1=yi+k(xi+1-xi)+k ,假设列坐标像素已经确定为xi,其行坐标为yi。那么下一个像素的列坐标为xi+1,而行坐标要么是yi,要么递增1为yi+1。是否增1取决于误差项d的值。误差项d的初值d0=0,x坐标每增加1,d的值相应递增直线的斜率值k,即d=d+k。一旦d≥1,就把它减去1,这样保证d在0、1之间。
当d≥0.5时,直线与垂线x=xi+1 交点最接近于当前像素(xi,yi)的右上方像素(xi +1,yi +1);
当d<0.5时,更接近于右方像素(xi +1,yi)。
为方便计算,令e=d-0.5,e的初始值为-0.5,增量为k。