演讲嘉宾 | 马超(亚马逊应用科学家)
整理 | 刘静
出品 | AI科技大本营(ID:rgznai100)
与传统基于张量(Tensor)的神经网络相比,图神经网络将图 (Graph) 作为输入,从图结构中学习潜在的知识,该方法在近些年已被证明在许多场景可以取得很好的效果。然而,使用传统的深度学习框架(比如 TensorFlow、Pytorch、MXNet)并不能方便地进行图神经网络的开发和训练,而 DGL 作为专门面向图神经网络的框架,可以很好地弥补这一缺陷。该框架在开源后于国内外引起了强烈的反响。
基于此,在CSDN主办的2019 AI开发者大会(AI ProCon 2019)上,亚马逊应用科学家马超,同时也是 DGL 项目的合作作者,发表了《使用 DGL 进行大规模图神经网络训练》的主题演讲。他从 API 使用、系统优化以及系统可扩展性等多个维度深入分享了 DGL 的设计思路。
以下为马超演讲全文,AI科技大本营整理(ID:rgznai100):
现场大部分朋友都来自工业界,我想应该对传统的图算法了解更多,比如 PageRank 算法应该是我们学生时代学到的第一个传统图算法。但是突然之间,图神经网络算法火了起来。下面这张图是近些年 GNN 论文发表数量的情况,我们可以看到从 2016 年开始,GNN 论文发表数量呈指数上