约束优化的自适应试验向量生成策略和基于聚类置换的可行性规则的差分进化(CACDE)

CACDE:Differential evolution with adaptive trial vector generation strategy and cluster-replacement-based feasibility rule for constrained optimization

原文:https://www.sciencedirect.com/science/article/pii/S0020025518300197

1.摘要

约束优化问题(COPS)在许多领域都很常见。为了有效地解决这些问题,本文提出了一种新的约束优化进化算法-CACDE,该算法结合了一种基于自适应试向量生成策略的差分进化算法(DE)。 m具有基于簇替换的可行性规则。在CACDE中,一些潜在的突变策略、比例因子和交叉速率被存储在候选池中,并且池中的每个元素被分配一个选择概率。在试验向量生成阶段,基于这些选择概率,竞争性地确定每个目标向量的突变策略、比例因子和交叉速率。同时,基于从生成改进的解决方案的先前搜索获知的统计信息,动态地更新选择概率。此外,为了减轻可行性规则的贪婪性,将主要群体划分成若干个聚类,每个聚类中的一个向量有条件地替换为存档的不可行。 通过与一些先进的COEAs的比较,验证了CACDE的优越性能,并与2组人工问题和5种广泛应用的机械设计问题进行了比较。结果表明: CACDE是解决COPS问题的一种有效方法,主要是由于采用了自适应DE和基于聚类替换的可行性规则。

2.介绍

必须强调的是,DE最初是针对无约束问题提出的,而约束优化算法的主要目标是寻找可行的全局最优解。为了通过DE有效地解决COPS问题,应该考虑以下两个问题:(1)开发一种有效的约束处理技术(CHT);(2)设计一个强大的搜索引擎。 

根据约束处理的方式,可以将现有的CHTS分组为三个类别:(1)基于惩罚函数的方法;(2)基于可行解的方法的优越性;(3)基于多目标优化的方法。

基于多目标优化的方法首先将目标函数与全局约束相结合,形成一个新的双目标优化问题,然后对双目标进行优化。 然而,仍然存在一些不足,解决多目标优化问题仍然是一项具有挑战性和费时的任务。

Poikolainen等人提出了一种基于聚类的DE种群初始化技术,该方法利用k-均值聚类算法将解按欧氏距离分组为两组。 

除了引入多样性外,利用多种战略的DE方法也很流行。

一般来说,使用DE作为搜索引擎时存在两个问题:(1)必须确定尝试向量生成策略(即变异和交叉算子);(2)控制策略。 

针对这些问题,本文提出了一种新的约束优化算法,将自适应DE与基于聚类替换的可行性规则(CACDE)相结合。自适应DE自适应地分配突变策略、F和CR,通过从先前的生成潜在向量的世代中学习。在CHT方面,是采用了可行性规则。此外,为了减轻选择压力,利用聚类技术,用目标值较低的存档里的不可行向量替换一些较差的解。

本研究的主要贡献如下:

(1)基于多种突变策略和控制参数的DE方法用于解决COPS的搜索引擎;

(2)采用自适应选择机制,确定每个目标向量最合适的变异策略和控制参数;

(3)将一种基于聚类替换的算子集成到基本的可行性规则中,以缓解贪婪(收敛过快,增加多样性);

(4)对CACDE的性能进行了综合评价,包括2组人工问题和5组广泛使用的约束机械设计问题。

3.基本概念

3.1 可行性规则

基本上,可行性规则倾向于可行的解决方案,而不是不可行的解决方案。使用此规则,必须对人口中的每个向量计算总体违反约束的程度。为了达到这个目标,违反约束的程度对jth约束的计算如下:

其中δ是将等式约束转化为不等式约束时使用的正容忍值。

在得到每个向量的目标函数值和总体约束违约后,其可行性规则函数如下:当比较两种解(即x和y)时。 如果满足下列条件之一,则被认为x优于解y(表示为x≺y):

(1)解x是可行的,但y是不可行的,即G(x)=0,G(y)>0;

(2)x和y都是不可行的,但x具有较小的整体约束违约,即0<G(x)<G(y);

(3)x和y都是可行的,但x的目标函数值较低,即G(z)=G(y)=0,f(z)<f(y)。

4.CACDE

我们的CACDE算法采用基于自适应尝试向量生成策略的DE作为主要搜索引擎,而基于聚类替换的可行性规则作为CHT的主要算法。主要特征 自适应DE方法的优点是引入了变异策略候选池(Mpool)、规模因子候选池(Fpool)和交叉速率候选池(CRPool),以及每个元素。 并且每个候选池中的每个元素都被分配了一个选择概率。在试向量生成步骤中,选择了相应的变异策略、标度因子值和交叉率, 根据选择概率确定候选池。根据从生成改进向量的先前搜索中学到的知识,在每一代中动态更新选择概率。基于聚类替换的可行性规则由两个步骤组成:

(1)首先,根据可行性规则,将每个目标向量与相应的试向量进行比较。

(2)如果一个试验向量无法存活到下一代的种群,但目标值低于相应的目标向量,则将选择该试验向量并将其存储在外部档案。然后,将主种群分组为几个簇,并将每个簇中的一个向量有条件地替换为存档的不可行向量。

4.1 多突变策略

具体而言,在突变步骤中,为每个目标向量分配一个选择概率,并为每个目标向量选择一个策略。此外,还提出了一种自适应机制。 根据从先前搜索中学到的生成改进向量的知识,每一代更新这些选择概率。

DE/current-to-best/1:这种策略依赖于最好的解决方案,通常在解决单峰问题时表现良好,收敛速度快。然而,它更有可能陷入局部最优状态,从而导致求解多模问题时的早熟收敛。

DE/current-to-rand/1:此策略应用旋转不变的算术交叉而不是二项交叉来生成试验向量。因此,这种策略是旋转不变的并且适合于问题。 具有移位和旋转的全局最优,已经使用旋转矩阵旋转。

DE/rand/2:这种策略通常收敛缓慢,但具有强大的勘探能力。因此,在求解多模问题时,它比基于最佳解的策略更合适。

4.2 具有多个控制参数的DE

因此,为了平衡搜索引擎的探索和开发能力,同时解决具有不同特征的特定问题,从范围[0.4,1.2]中提取了五个值,并给出了一个步骤。 0.2的步长构成FPool,从范围[0.2,1.0]取5个值,步长为0.2,构成CRPool。请注意,在FBPool中,我们包括一个大的F值(即F=1.2)。 以增加从局部最优逃逸的概率。F>1可以解决一些问题并偶尔有效。

4.3 更新选择概率的自适应机制

假设t代的第i向量为XTI,变异策略、尺度因子和交叉概率分别为MTI、FTI和CRTI。最初,这些值是随机选择的。在生成t代时,为每个目标矢量生成试验向量UTI后,根据可行性规则对XTI和UTI进行配对比较。根据比较结果,所有元素的选择概率更新如下:

其中,η是学习率,并且总是一个小的正值。ε = 1 × 10^{-30}用于避免可能的0成功率,ns(k)和nt(k)分别表示在第t代候选池中成功的第k个元素的数目和第k个元素的总数。随后,为便于使用,对所有选择概率进行了归一化。

在获得归一化选择概率后,对t+1代第i向量的变异策略、尺度因子和交叉率进行了如下更新:

其中,函数RWS(·)表示使用轮盘赌轮选择方法从相应的候选池中选择一个值。那些选择概率较大的元素更有可能被选中,从而传播潜在的解。

4.4 基于聚类替换的可行性规则

可行性规则是最常用的CHTS之一。然而,它也因贪欲过度而受到批评。为了缓解这种贪婪,人们提出了一些改进,如随机排序[38]和替换机制。

在将所有不可行的满足f(Uti)<f(Xti)的不可行UTI存储到Yt后,我们将主种群按NC不相交聚类分组。 到设计空间中向量的位置。我们将KtH簇中具有最大总约束违反的向量表示为z,y表示具有最小整体约束的向量。 对于每个簇,我们比较了z和y,当f(y)<f(z)时,用y代替z,并将y从yt中移除。

请注意,参数Pmax用于避免过度替换。Pmax过小将发生在一个小的地区,而减轻贪婪的目标将无法实现。相反,当Pmax过大时,会频繁发生替换,从而影响收敛性。

替代者可分为两类:(z是种群中的个体,y是外部存档中的个体)

(1)满足条件f(y)<f(z)和G(y)<G(z);由于替换之后的z具有较低的目标值和较低的总体约束冲突,因此收敛到可行的全局最优是有益的。

(2)满足条件f(y)<f(z)和G(y)>G(z)。向量z比y具有更大的整体约束违反性,但y目标值较低。这种类型的替代增加了主要种群的多样性,很可能会引导搜索目标值较低的区域。将这两种类型的替换结合起来,使得整个搜索更有可能收敛到全局可行最优。

5.总结

COEA的性能在很大程度上取决于搜索引擎和所用的约束处理技术(CHT)。 本文提出了一种新的约束优化进化算法,该算法将自适应差分进化与基于聚类替换的可行性规则相结合。为了增强DE的搜索能力,将具有多种特征的突变池(Mpool),比例因子池(Fpool)和交叉速率池(CRpool)合并到DE中以用作候选对象。然后,设计了一种选择概率更新机制,以确定最合适的试验载体产生策略以及在不同世代的主要种群中每种载体的相应控制参数。 同时,为了减轻可行性规则的过度贪婪性,提出了一种基于聚类的替换算子,该算子用具有低目标的不可行向量替换了某些向量。

最后,通过多个实验对新的自适应DE和基于聚类替换的可行性规则的有效性和优越性进行了实验研究和评价。数值 结果表明,所提出的自适应DE和聚类替换策略有助于提高DE在求解COPS时的搜索能力。在以后的工作中,我们希望针对无法分离/可分离的目标和约束的问题改进当前的CACDE版本。 我们还想确定如何使用替代模型以较少的适应性评估来近似全局可行解。

 

约束优化的自适应试验向量生成策略和基于聚类置换的可行性规则的差分进化。CACDE
step0.初始化:初始化种群Pop(t),随机分配策略和参数,均等分候选池概率P;

step1.评价:f(x)和g(x) ;
step2.利用策略和参数生成试验向量u并评价;
step3.选择和存储: 通过可行性规则比较(2.2)x和u进行替换,
      将不可行解中G(u)>G(x)但是f(u)<f(x)的u存储到Y中;

step4.聚类替换:将Y中的一些较好的解加入到种群中;

step5.更新候选池概率P公式(7)以及通过轮盘赌进行替换策略和参数公式(8)。
step6.令Y为空跳到step2


step4: 1.设置聚类分组为Nc=min(Pmax,K[Y中个体数])个组,大小为Ns(等分)。
    2.随机选择一个参考向量R,寻找距离R最近的x1∈X,在找出距离x1最近的剩下的Ns-1个个体,
    组成Z。
    3.从X中除去Z中的个体,找出Z中最大整体约束违反z,以及Y中最小整体约束违反y[通过G()值判断]。
    4.判断目标函数值f(),并进行替换Z。将Z加入X'中,最后将X'作为下一代新的目标向量。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值