电磁学乱七八糟的符号(二)

电磁学乱七八糟的符号(二)

@(study)[Maxe, markdown_study, LaTex_study]
author:何伟宝


前言:第五章开始因为要大量考虑介质的各种媒质常数,所以一定要分清公式的使用范围!
还有特定关系的前提和假设

所以针对第五章,分开两篇写

chapter5电磁波的传播(TEM,理想介质)

波动方程

因为这里和上一篇blog有出入,重写一次:
∇ 2 E ⃗ ( r ⃗ , t ) − μ ε ∂ 2 E ⃗ ( r ⃗ , t ) ∂ t 2 = − μ σ ∂ E ⃗ ( r ⃗ , t ) ∂ t \nabla^2 \vec E(\vec r,t)-\mu\varepsilon\frac{\partial^2\vec E(\vec r,t)}{\partial t^2}=- \mu\sigma \frac{\partial \vec E(\vec r,t)}{\partial t} 2E (r ,t)μεt22E (r ,t)=μσtE (r ,t)

∇ 2 H ⃗ ( r ⃗ , t ) − μ ε ∂ 2 H ⃗ ( r ⃗ , t ) ∂ t 2 = − μ σ ∂ H ⃗ ( r ⃗ , t ) ∂ t \nabla^2 \vec H(\vec r,t)-\mu\varepsilon\frac{\partial^2 \vec H(\vec r,t)}{\partial t^2}=- \mu\sigma\frac{\partial \vec H(\vec r,t)}{\partial t} 2H (r ,t)μεt22H (r ,t)=μσtH (r ,t)
由于 ∂ E 和 ∂ H \partial E 和\partial H EH极其难算,所以上式为一般波动方程

理想介质中( σ = 0 \sigma=0 σ=0)(空气)下,一般波动方程退化为齐次非含源项波动方程:
∇ 2 E ⃗ ( r ⃗ , t ) − μ ε ∂ 2 E ⃗ ( r ⃗ , t ) ∂ t 2 = 0 \nabla^2 \vec E(\vec r,t)-\mu\varepsilon\frac{\partial^2\vec E(\vec r,t)}{\partial t^2}=0 2E (r ,t)μεt22E (r ,t)=0

∇ 2 H ⃗ ( r ⃗ , t ) − μ ε ∂ 2 H ⃗ ( r ⃗ , t ) ∂ t 2 = 0 \nabla^2 \vec H(\vec r,t)-\mu\varepsilon\frac{\partial^2 \vec H(\vec r,t)}{\partial t^2}=0 2H (r ,t)μεt22H (r ,t)=0

在真空中有:

光速c

∇ 2 E ⃗ ( r ⃗ , t ) − 1 c 2 ∂ 2 E ⃗ ( r ⃗ , t ) ∂ t 2 = 0 \nabla^2 \vec E(\vec r,t)-\frac1 {c^2}\frac{\partial^2\vec E(\vec r,t)}{\partial t^2}=0 2E (r ,t)c21t22E (r ,t)=0

∇ 2 H ⃗ ( r ⃗ , t ) − 1 c 2 ∂ 2 H ⃗ ( r ⃗ , t ) ∂ t 2 = 0 \nabla^2 \vec H(\vec r,t)-\frac1 {c^2}\frac{\partial^2 \vec H(\vec r,t)}{\partial t^2}=0 2H (r ,t)c21t22H (r ,t)=0
其中光速c:
c = 1 μ 0 ε 0 ≈ 3 × 1 0 − 8 ( m / s ) c=\frac1 {\sqrt{\mu_0 \varepsilon_0}} \approx 3 \times 10^{-8}(m/s) c=μ0ε0 13×108(m/s)
 
齐次非含源项波动方程复数化有:

波数&&相位常数k(同一个东西)

∇ 2 E ⃗ ( r ⃗ , t ) − k 2 E ⃗ ( r ⃗ ) = 0 \nabla^2 \vec E(\vec r,t)-k^2\vec E(\vec r)=0 2E (r ,t)k2E (r )=0

∇ 2 H ⃗ ( r ⃗ , t ) − k 2 H ⃗ ( r ⃗ ) = 0 \nabla^2 \vec H(\vec r,t)-k^2\vec H(\vec r)=0 2H (r ,t)k2H (r )=0

其中波数:
k = ω μ ε = ω v k=\omega\sqrt{\mu\varepsilon}=\frac \omega v k=ωμε =vω

由TEM的瞬时通解可以知道,k表示波传播单位距离的空间相位变化,又称相位常数:
k = 2 π λ k=\frac {2\pi}{\lambda} k=λ2π

TEM波动方程

引入平面电磁波(TEM)约束:
KaTeX parse error: Expected & or \\ or \cr or \end at position 102: …{\partial y}=0 \̲ ̲ \end{cases}
代入波动方程可得到:
d 2 E x d z 2 + k 2 E x = 0 \frac {d^2 E_x}{dz^2}+k^2 E_x =0 dz2d2Ex+k2Ex=0
d 2 H y d z 2 + k 2 H y = 0 \frac {d^2 H_y}{dz^2}+k^2 H_y =0 dz2d2Hy+k2Hy=0
通解形式(瞬时):
E x ( z , t ) = R e [ E x ( z ) e j ω t ] = E x 0 + c o s ( ω t − k z ) E_x(z,t)=Re[E_x(z)e^{j\omega t}]=E^+_{x0} cos(\omega t -kz) Ex(z,t)=Re[Ex(z)ejωt]=Ex0+cos(ωtkz)

角频率 ω \omega ω

角频率: ω \omega ω表示单位时间内时间相位变化
ω T = 2 π f = 1 T = ω 2 π \omega T=2\pi \\f=\frac1 T =\frac \omega{2\pi} ωT=2πf=T1=2πω

相速 v p v_p vp

相速 v p v_p vp表示等相面移动的速度:
v p = d z d t = ω k = 1 μ ε v_p=\frac {dz}{dt}=\frac \omega k = \frac1 {\sqrt{\mu \varepsilon}} vp=dtdz=kω=με 1

传播特性(计算用)

若已知E,求H,有:
E ( z ) = a x E x 0 + e − j k z E(z)=a_x E^+_{x0}e^{-jkz} E(z)=axEx0+ejkz
H y ( z , t ) = 1 η E x 0 + c o s ( ω t − k z ) H_y(z,t)=\frac 1\eta E^+_{x0}cos(\omega t-kz) Hy(z,t)=η1Ex0+cos(ωtkz)
###波阻抗 η \eta η
重写, η \eta η又称本征阻抗或特性阻抗,单位是 Ω \Omega Ω
η = μ ε \eta=\sqrt{\frac \mu\varepsilon} η=εμ

能速 v e v_e ve

在均匀平面电磁波中有能速:
S ⃗ a v ω a v = a ⃗ z 1 ε μ = v e \frac {\vec S_{av}}{\omega_{av}}=\vec a_z \frac 1{\sqrt{\varepsilon\mu}} =v_e ωavS av=a zεμ 1=ve
其中 ω a v \omega_{av} ωav表示时均电磁能流密度,变形为 S a v = v a v ω a v S_{av}=v_{av}\omega_{av} Sav=vavωav则有:
空间某点的时均能流密度是以速度 v e v_e ve运动的时均能量密度 ω a v \omega_{av} ωav,所以称 v e v_e ve为能速

特别地,在理想介质中, v e = v p v_e=v_{p} ve=vp

平面电磁波,导电媒质

在这里考虑的重点在于 σ ≠ 0 \sigma \neq 0 σ̸=0所以波动方程不能像上面一样化简
由于这一节概念多,会配以理解

TEM波动方程

回归最原始的波动方程:
∇ 2 E ⃗ ( r ⃗ , t ) − μ ε ∂ 2 E ⃗ ( r ⃗ , t ) ∂ t 2 = − μ σ ∂ E ⃗ ( r ⃗ , t ) ∂ t \nabla^2 \vec E(\vec r,t)-\mu\varepsilon\frac{\partial^2\vec E(\vec r,t)}{\partial t^2}=- \mu\sigma \frac{\partial \vec E(\vec r,t)}{\partial t} 2E (r ,t)μεt22E (r ,t)=μσtE (r ,t)

∇ 2 H ⃗ ( r ⃗ , t ) − μ ε ∂ 2 H ⃗ ( r ⃗ , t ) ∂ t 2 = − μ σ ∂ H ⃗ ( r ⃗ , t ) ∂ t \nabla^2 \vec H(\vec r,t)-\mu\varepsilon\frac{\partial^2 \vec H(\vec r,t)}{\partial t^2}=- \mu\sigma\frac{\partial \vec H(\vec r,t)}{\partial t} 2H (r ,t)μεt22H (r ,t)=μσtH (r ,t)

用复数形式表示后,用类理想介质的齐次方程表示为:
d 2 E x d z 2 + k ⃗ c 2 E x = 0 \frac {d^2 E_x}{dz^2}+\vec k^2_c E_x =0 dz2d2Ex+k c2Ex=0
d 2 H y d z 2 + k ⃗ c 2 H y = 0 \frac {d^2 H_y}{dz^2}+\vec k^2_c H_y =0 dz2d2Hy+k c2Hy=0
注意到,因为右边的是一次项,微分下来会让k变成一个复数

复波数 k c k_c kc&&复电容率 ε c \varepsilon_c εc

k c = ω μ ε c , ε c = ( ε − j σ ω ) = ε ‘ − j ε ‘ ‘ k_c=\omega \sqrt{\mu \varepsilon_c} , \varepsilon_c = (\varepsilon - j\frac \sigma\omega)=\varepsilon^` -j\varepsilon^{``} kc=ωμεc ,εc=(εjωσ)=εjε
由于复电容率的更新,导致理想介质中的很多参数都复数化了,所以会有新的拓展

复传播常数 γ \gamma γ&&衰减常数 α \alpha α&&相位常数 β \beta β

γ = j k c = ω μ ε c = α + j β \gamma=jk_c=\omega \sqrt{\mu \varepsilon_c}=\alpha +j\beta γ=jkc=ωμεc =α+jβ
其中:
α = ω μ ε 2 [ 1 + ( σ ω ε ) 2 − 1 ] \alpha=\omega\sqrt{\frac{\mu\varepsilon}{2}[\sqrt{1+(\frac {\sigma}{\omega\varepsilon})^2}-1]} α=ω2με[1+(ωεσ)2 1]
β = ω μ ε 2 [ 1 + ( σ ω ε ) 2 + 1 ] \beta=\omega\sqrt{\frac{\mu\varepsilon}{2}[\sqrt{1+(\frac {\sigma}{\omega\varepsilon})^2}+1]} β=ω2με[1+(ωεσ)2 +1]
是有点复杂,但是到后面的良导体良介质会化简!
注意到这里的相位常数不再等于波数了.(虽然后面用起来还是很像的)

对于TEM来说,波动方程可退化为:
d 2 E x d z 2 − γ 2 E x = 0 \frac {d^2 E_x}{dz^2}-\gamma^2 E_x =0 dz2d2Exγ2Ex=0
d 2 H y d z 2 − γ 2 H y = 0 \frac {d^2 H_y}{dz^2}-\gamma^2 H_y =0 dz2d2Hyγ2Hy=0
简单的微分方程求解得:
E ( z ) = E ⃗ x 0 + e − γ z = E ⃗ x 0 + e − α z e − j β z E(z)=\vec E^+_{x0}e^{-\gamma z}=\vec E^+_{x0}e^{-\alpha z}e^{-j\beta z} E(z)=E x0+eγz=E x0+eαzejβz
H y ( z , t ) = 1 η c E ⃗ x 0 + e − γ z = 1 η c E ⃗ x 0 + e − α z e − j β z = 1 ∣ η c ∣ E ⃗ x 0 + e − α z e − j β z + ϕ H_y(z,t)=\frac 1\eta_c \vec E^+_{x0}e^{-\gamma z}=\frac 1\eta_c \vec E^+_{x0}e^{-\alpha z}e^{-j\beta z} = \frac 1 {|\eta_c|} \vec E^+_{x0}e^{-\alpha z}e^{-j\beta z+\phi} Hy(z,t)=η1cE x0+eγz=η1cE x0+eαzejβz=ηc1E x0+eαzejβz+ϕ

复波阻抗&&复本征阻抗 η c \eta_c ηc

η c = μ ε c = ∣ η c ∣ e j ϕ \eta_c=\sqrt{\frac \mu{\varepsilon_c}}=|\eta_c|e^{j\phi} ηc=εcμ =ηcejϕ
其中:
∣ η c ∣ = ( μ ε ) 1 2 [ 1 + ( σ ω ε ) 2 ] − 1 4 |\eta_c|=(\frac \mu\varepsilon)^{\frac 12}[1+(\frac {\sigma}{\omega \varepsilon})^2]^{- \frac14} ηc=(εμ)21[1+(ωεσ)2]41
ϕ = 1 2 a r c t a n ( σ ω ε ) \phi=\frac 12 arctan(\frac \sigma{\omega\varepsilon}) ϕ=21arctan(ωεσ)
###相速 v p v_p vp&&色散波
v p = ω β = 1 ε c μ = 1 ε μ ( 1 − j σ ω ε ) v_p=\frac \omega\beta=\frac1 {\varepsilon_c \mu}=\frac1 {\sqrt{\varepsilon \mu(1-j\frac {\sigma}{\omega\varepsilon})}} vp=βω=εcμ1=εμ(1jωεσ) 1
可以看出这里的相速会和频率有关,所以这种波称为色散波,相应导电媒质称为色散媒质

良导体和良介质的判定

J ⃗ J ⃗ d ∼ σ ω ε { ≫ 1 , 良 导 体 ≪ 1 , 良 介 质 \frac{\vec J}{\vec J_d} \sim \frac{\sigma}{\omega\varepsilon} \begin{cases} \gg 1,\quad 良导体 \\ \ll 1,\quad 良介质 \end{cases} J dJ ωεσ{1,1,

平面电磁波,良导体

传播常数 γ \gamma γ

γ = j k c = ε μ ( 1 − j σ ω ε ) ≈ j ω μ σ j ω = 1 + j 2 ω μ σ \gamma=jk_c=\sqrt{\varepsilon \mu(1-j\frac {\sigma}{\omega\varepsilon})} \approx j\omega\sqrt{\frac{\mu\sigma}{j\omega}}=\frac{1+j}{\sqrt2} \sqrt{\omega \mu\sigma} γ=jkc=εμ(1jωεσ) jωjωμσ =2 1+jωμσ

衰减常数&&相位常数

α ≈ β ≈ π f μ σ = ω μ σ 2 \alpha \approx \beta \approx \sqrt{\pi f \mu\sigma}=\sqrt{\frac{\omega\mu\sigma}{2}} αβπfμσ =2ωμσ

复波阻抗

η c = μ ε c = μ ε ( 1 1 − j σ ω ε ) ≈ j ω μ σ = ( 1 + j ) π f μ σ = e j π 4 2 π f μ σ \eta_c =\sqrt{\frac \mu{\varepsilon_c}}=\sqrt{\frac \mu\varepsilon (\frac1 {1-j\frac \sigma{\omega\varepsilon}})} \approx \sqrt{\frac {j\omega\mu}{\sigma}}=(1+j)\sqrt{\frac {\pi f \mu}{\sigma}}=e^{j\frac\pi 4}\sqrt{\frac {2\pi f \mu}{\sigma}} ηc=εcμ =εμ(1jωεσ1) σjωμ =(1+j)σπfμ =ej4πσ2πfμ

相速

v p = ω β = 1 μ ε c = 1 μ ε ( 1 − j σ ω ε ) ≈ 2 ω μ σ v_p=\frac \omega\beta=\frac1{\sqrt{\mu{\varepsilon_c}}}=\frac1{\sqrt{\mu{\varepsilon}(1-j\frac{\sigma}{\omega\varepsilon})}} \approx \sqrt{\frac {2\omega}{\mu\sigma}} vp=βω=μεc 1=με(1jωεσ) 1μσ2ω

趋肤深度 δ \delta δ

由上述可知:
a ∼ f , μ , σ a\sim f,\mu,\sigma af,μ,σ
所以在良导体中,电磁波很快就衰减完了,电磁波仅局限于道题表面附近区域,称为趋肤效应,故有趋肤深度 δ \delta δ:
δ = 1 a = 2 ω μ σ = 1 π f μ σ \delta =\frac1a =\sqrt{\frac2 {\omega\mu\sigma}}=\frac 1{\sqrt{\pi f \mu\sigma}} δ=a1=ωμσ2 =πfμσ 1
在良导体中:
δ = 1 β = λ 2 π \delta=\frac1\beta=\frac\lambda {2\pi} δ=β1=2πλ

表面阻抗和表面电抗

η c = R S + j X S ≈ ( 1 + j ) π f μ σ \eta_c=R_S+jX_S \approx (1+j)\sqrt{\frac {\pi f \mu}{\sigma}} ηc=RS+jXS(1+j)σπfμ
其中 R S R_S RS表面阻抗 和 X S X_S XS表面电抗,相应 Z S Z_S ZS称为表面阻抗,所以有:
R S = X S = π f μ σ = 1 σ δ R_S=X_S=\sqrt{\frac{\pi f \mu}{\sigma}}=\frac1{\sigma\delta} RS=XS=σπfμ =σδ1

平面电磁波,良介质

因为前面就讲过理想介质,所以这个没多少

传播常数

γ = ε μ ( 1 − j σ ω ε ) ≈ j ω μ σ = ( 1 − j σ 2 ω ε ) \gamma=\sqrt{\varepsilon \mu(1-j\frac {\sigma}{\omega\varepsilon})} \approx j\omega\sqrt{\mu\sigma}=(1-j\frac{\sigma}{2\omega\varepsilon}) γ=εμ(1jωεσ) jωμσ =(1j2ωεσ)

衰减常数

α ≈ σ 2 μ ε \alpha \approx \frac\sigma 2\sqrt{\frac \mu\varepsilon} α2σεμ

相位常数

β ≈ ω μ ε \beta \approx \omega \sqrt{\mu\varepsilon} βωμε

复波阻抗

η c = μ ε c = μ ε ( 1 1 − j σ ω ε ) ≈ μ ε ( 1 + j σ 2 ω ε ) \eta_c =\sqrt{\frac \mu{\varepsilon_c}}=\sqrt{\frac \mu\varepsilon (\frac1 {1-j\frac \sigma{\omega\varepsilon}})} \approx \sqrt{\frac\mu\varepsilon}(1+j\frac{\sigma}{2\omega\varepsilon}) ηc=εcμ =εμ(1jωεσ1) εμ (1+j2ωεσ)

任意方向传播的均匀平面电磁波

波数矢量&&位置矢量

E ⃗ ( r ⃗ ) = E ⃗ 0 + e − j k ⃗ ∙ r ⃗ = E ⃗ 0 + e − j k a ⃗ n ∙ r ⃗ \vec E(\vec r)=\vec E^+_0 e^{-j\vec k\bullet \vec r}=\vec E^+_0e^{-j k\vec a_n\bullet \vec r} E (r )=E 0+ejk r =E 0+ejka nr
其中k为波数矢量,又称传播矢量,r称为位置矢量

平面电磁波,极化

以合成波电场强度与x轴夹角 α \alpha α分类:

线极化波

α = a r c t a n ( E y 0 E x 0 ) = C \alpha =arctan(\frac {E_{y0}}{E_{x0}})=C α=arctan(Ex0Ey0)=C

圆极化波

α = a r c t a n ( E y 0 E x 0 ) = a r c t a n ( ∓ E 0 s i n ω t E 0 c o s ω t ) = a r c t a n ( ∓ t a n ω t ) = ∓ ω t \alpha =arctan(\frac {E_{y0}}{E_{x0}})= arctan(\frac {\mp E_{0}sin\omega t}{E_{0}cos\omega t})=arctan(\mp tan\omega t)=\mp \omega t α=arctan(Ex0Ey0)=arctan(E0cosωtE0sinωt)=arctan(tanωt)=ωt

椭圆极化波

α = a r c t a n ( ∓ E y 0 E x 0 t a n ω t ) ≠ ∓ ω t \alpha =arctan (\mp \frac {E_{y0}}{E_{x0}}tan \omega t) \neq \mp \omega t α=arctan(Ex0Ey0tanωt)̸=ωt

方向用 α \alpha α 来判断也是可以的,在z正向下, a l p h a alpha alpha为负右旋,为正左旋,其他类似

如果你想请我吃个南五的话

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小何的芯像石头

谢谢你嘞,建议用用我的链接

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值