电磁学乱七八糟的符号(一)
@(study)[DSP, markdown_study, LaTex_study]
author:何伟宝
chapter1 场量基础
通量 ψ \psi ψ
ψ
=
∫
s
F
⃗
∙
a
⃗
n
d
S
\psi = \int_s \vec F \bullet \vec a_n d S
ψ=∫sF∙andS
ψ
=
∮
S
F
⃗
∙
d
S
⃗
\psi = \oint_S \vec F \bullet d\vec S
ψ=∮SF∙dS
旋量 Γ \Gamma Γ
Γ
=
∫
l
F
⃗
∙
d
l
⃗
\Gamma=\int_l \vec F \bullet d\vec l
Γ=∫lF∙dl
Γ
=
∮
l
F
⃗
∙
d
l
⃗
\Gamma=\oint_l \vec F \bullet d\vec l
Γ=∮lF∙dl
矢性微分算符 ∇ \nabla ∇
∇ = a ⃗ x ∂ ∂ x + a ⃗ y ∂ ∂ y + a ⃗ z ∂ ∂ z \nabla =\vec a_x \frac{\partial }{\partial x}+\vec a_y \frac{\partial }{\partial y}+\vec a_z \frac{\partial }{\partial z} ∇=ax∂x∂+ay∂y∂+az∂z∂
拉普拉斯算符 ∇ 2 \nabla^2 ∇2
∇ = a ⃗ x ∂ 2 ∂ x 2 + a ⃗ y ∂ 2 ∂ y 2 + a ⃗ z ∂ 2 ∂ z 2 \nabla =\vec a_x \frac{\partial^2 }{\partial x^2}+\vec a_y \frac{\partial^2 }{\partial y^2}+\vec a_z \frac{\partial^2 }{\partial z^2} ∇=ax∂x2∂2+ay∂y2∂2+az∂z2∂2
∇ × ( ∇ × F ⃗ ) = ∇ ( ∇ ∙ F ⃗ ) − ∇ 2 F ⃗ \nabla \times (\nabla \times \vec F) = \nabla(\nabla \bullet \vec F) -\nabla^2 \vec F ∇×(∇×F)=∇(∇∙F)−∇2F
梯度 grad u
g
r
a
d
u
=
a
⃗
x
∂
u
∂
x
+
a
⃗
y
∂
u
∂
y
+
a
⃗
z
∂
u
∂
z
grad u =\vec a_x \frac{\partial u}{\partial x}+\vec a_y \frac{\partial u}{\partial y}+\vec a_z \frac{\partial u}{\partial z}
gradu=ax∂x∂u+ay∂y∂u+az∂z∂u
g
r
a
d
u
=
∇
u
gradu=\nabla u
gradu=∇u
散度div F
d i v F ⃗ ≜ lim △ V → 0 ∮ S F ⃗ d S ⃗ △ V div \vec F \triangleq \lim_{\triangle V\to 0} \frac{\oint_S \vec F d \vec S}{\triangle V} divF≜△V→0lim△V∮SFdS
d i v F ⃗ = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z = ∇ ∙ F ⃗ div \vec F=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+ \frac{\partial F_z}{\partial z} =\nabla \bullet \vec F divF=∂x∂Fx+∂y∂Fy+∂z∂Fz=∇∙F
∫ V ∇ ∙ F ⃗ d V = ∮ l F ⃗ d S ⃗ \int_V \nabla \bullet \vec F d V =\oint_l \vec F d \vec S ∫V∇∙FdV=∮lFdS
环量面密度 γ n \gamma_n γn
γ n ≜ lim △ S → 0 ∮ l F ⃗ d l ⃗ △ S \gamma_n \triangleq \lim_{\triangle S\to 0} \frac{\oint_l \vec F d \vec l}{\triangle S} γn≜△S→0lim△S∮lFdl
旋度 R m R_m Rm
R ⃗ m ≜ r o t F ⃗ = a ⃗ n ⟮ lim △ S → 0 ∮ F ⃗ d l ⃗ △ S ⟯ m a x \vec R_m \triangleq rot \vec F =\vec a_n \lgroup \lim_{\triangle S \to 0} \frac{\oint \vec F d \vec l }{\triangle S} \rgroup_{max} Rm≜rotF=an⟮△S→0lim△S∮Fdl⟯max
r o t F ⃗ = ∇ × F ⃗ rot \vec F =\nabla \times \vec F rotF=∇×F
∫ S ∇ × F ⃗ ∙ d S ⃗ = ∮ l F ⃗ d l ⃗ \int_S \nabla \times \vec F \bullet d \vec S = \oint_l \vec F d \vec l ∫S∇×F∙dS=∮lFdl
chapter2 常量基本方程
电荷密度
体电荷密度:
ρ
(
r
⃗
∙
)
=
lim
△
V
→
0
△
q
△
V
∙
=
d
q
d
V
∙
\rho (\vec r^{\bullet} ) = \lim_{\triangle V \to 0 } \frac{\triangle q}{\triangle V^\bullet} = \frac{d q}{d V^\bullet}
ρ(r∙)=△V→0lim△V∙△q=dV∙dq
q
=
∫
V
ρ
(
r
⃗
∙
)
d
V
∙
q= \int_V \rho(\vec r^\bullet) d V^\bullet
q=∫Vρ(r∙)dV∙
面电荷密度:
ρ
s
(
r
⃗
∙
)
=
lim
△
S
→
0
△
q
△
S
∙
=
d
q
d
S
∙
\rho_s (\vec r^{\bullet} ) = \lim_{\triangle S \to 0 } \frac{\triangle q}{\triangle S^\bullet} = \frac{d q}{d S^\bullet}
ρs(r∙)=△S→0lim△S∙△q=dS∙dq
q
=
∫
S
ρ
S
(
r
⃗
∙
)
d
S
∙
q= \int_S \rho_S(\vec r^\bullet) d S^\bullet
q=∫SρS(r∙)dS∙
线电荷密度:
ρ
l
(
r
⃗
∙
)
=
lim
△
l
→
0
△
q
△
l
∙
=
d
q
d
l
∙
\rho_l (\vec r^{\bullet} ) = \lim_{\triangle l \to 0 } \frac{\triangle q}{\triangle l^\bullet} = \frac{d q}{d l^\bullet}
ρl(r∙)=△l→0lim△l∙△q=dl∙dq
q
=
∫
l
ρ
l
(
r
⃗
∙
)
d
l
∙
q= \int_l \rho_l(\vec r^\bullet) d l^\bullet
q=∫lρl(r∙)dl∙
点电荷:
q
(
r
⃗
)
=
∑
i
=
1
N
q
i
(
r
⃗
i
)
q(\vec r)= \sum_{i=1}^N q_i(\vec r_i)
q(r)=i=1∑Nqi(ri)
电流&&电流密度
电流:
i
=
lim
△
t
→
0
△
q
△
t
=
d
q
d
t
i = \lim_{\triangle t \to 0}\frac{\triangle q }{\triangle t}=\frac{d q}{d t}
i=△t→0lim△t△q=dtdq
体电流密度矢量:
J ⃗ = a ⃗ n lim △ S ∙ → 0 △ i △ S ∙ = a ⃗ n d i d S ∙ \vec J= \vec a_n \lim_{\triangle S^\bullet \to 0} \frac{\triangle i}{\triangle S^\bullet}=\vec a_n \frac{di }{dS^\bullet} J=an△S∙→0lim△S∙△i=andS∙di
i = ∫ s J ⃗ ∙ d S ⃗ i = \int_s \vec J \bullet d \vec S i=∫sJ∙dS
∇ ∙ J ⃗ = − ∂ ρ ∂ t \nabla \bullet \vec J=- \frac{\partial \rho}{\partial t} ∇∙J=−∂t∂ρ
面电流密度:
J ⃗ s = a ⃗ n lim △ l ∙ → 0 △ i △ l ∙ = a ⃗ n d i d l ∙ \vec J_s =\vec a_n \lim_{\triangle l^\bullet \to 0} \frac{\triangle i}{\triangle l^\bullet} = \vec a_n \frac{d i}{d l^\bullet} Js=an△l∙→0lim△l∙△i=andl∙di
i = ∫ l J ⃗ s ∙ ( n ⃗ × d l ⃗ ∙ ) i = \int_l \vec J_s \bullet (\vec n \times d \vec l^\bullet) i=∫lJs∙(n×dl∙)
由于静态场的麦克斯韦方程组还没有统一,这里就不写了
电场强度E:
E ⃗ ≜ F ⃗ q 0 \vec E \triangleq \frac{\vec F}{q_0} E≜q0F
磁感应强度B:
B ⃗ ≜ μ 4 π ∮ l I d l ⃗ × a R R 2 \vec B \triangleq \frac{\mu}{4\pi}\oint_l \frac{I d \vec l \times a_R}{R^2} B≜4πμ∮lR2Idl×aR
感应电动势 ε i n \varepsilon_{in} εin
ε
i
n
≜
−
d
ψ
d
t
\varepsilon_{in} \triangleq -\frac{d \psi}{d t}
εin≜−dtdψ
其中
ψ
\psi
ψ为磁通量
ψ
≜
∫
S
B
⃗
∙
d
S
⃗
\psi \triangleq \int_S \vec B \bullet d \vec S
ψ≜∫SB∙dS
所以:
ε
i
n
=
∫
s
∂
B
⃗
∂
t
∙
d
S
⃗
\varepsilon_{in} = \int_s \frac{\partial \vec B}{\partial t} \bullet d \vec S
εin=∫s∂t∂B∙dS
本章的一些常数
- $\varepsilon_0 自由空间的电容率 (介电常数) $
- μ 0 \mu_0 μ0真空磁导率
chapter3静态场
标量电位 Φ \Phi Φ
E ⃗ ( r ⃗ ) ≜ − △ Φ ( r ⃗ ) \vec E(\vec r) \triangleq -\triangle\Phi(\vec r) E(r)≜−△Φ(r)
Φ ( r ⃗ ) = W q \Phi(\vec r)=\frac{W}{q} Φ(r)=qW
电位的标量泊松方程:
∇
2
Φ
(
r
⃗
)
=
−
ρ
(
r
⃗
)
ε
0
\nabla^2 \Phi(\vec r) = - \frac{\rho(\vec r)}{\varepsilon_0}
∇2Φ(r)=−ε0ρ(r)
电位的标量拉普拉斯方程:
∇
2
Φ
(
r
⃗
)
=
0
\nabla^2 \Phi(\vec r) = 0
∇2Φ(r)=0
矢量磁位(磁矢位) A
B ⃗ ( r ⃗ ) ≜ ∇ × A ⃗ ( r ⃗ ) \vec B (\vec r )\triangleq \nabla \times \vec A(\vec r) B(r)≜∇×A(r)
库仑规范:
∇
∙
A
⃗
=
0
\nabla \bullet \vec A = 0
∇∙A=0
磁矢位的矢量泊松方程:
∇
2
A
⃗
(
r
⃗
)
=
−
μ
0
J
⃗
(
r
⃗
)
\nabla^2 \vec A (\vec r )=- \mu_0 \vec J (\vec r)
∇2A(r)=−μ0J(r)
磁矢位的矢量拉普拉斯方程
∇
2
A
⃗
(
r
⃗
)
=
0
\nabla^2 \vec A (\vec r )=0
∇2A(r)=0
磁矩m:
m
⃗
≜
I
⃗
S
⃗
\vec m \triangleq \vec I \vec S
m≜IS
极化强度矢量P
P
⃗
(
r
⃗
)
=
lim
△
V
→
0
∑
i
p
⃗
i
△
V
\vec P(\vec r)=\lim_{\triangle V \to 0} \frac{\sum_i \vec p_i}{\triangle V}
P(r)=△V→0lim△V∑ipi
P
⃗
=
χ
e
ε
0
E
⃗
\vec P = \chi_e \varepsilon_0 \vec E
P=χeε0E
其中
χ
e
\chi_e
χe为电极化率
电位移矢量D
D
⃗
(
r
⃗
)
≜
ε
0
E
⃗
(
r
⃗
)
+
P
⃗
(
r
⃗
)
\vec D(\vec r) \triangleq \varepsilon_0 \vec E(\vec r)+\vec P(\vec r)
D(r)≜ε0E(r)+P(r)
所以有:
∫ s D ⃗ ( r ⃗ ) ∙ d S ⃗ = q \int_s \vec D(\vec r) \bullet d \vec S =q ∫sD(r)∙dS=q
∇ ∙ D ⃗ ( r ⃗ ) = ρ ( r ⃗ ) \nabla \bullet \vec D(\vec r) = \rho(\vec r) ∇∙D(r)=ρ(r)
D ⃗ = ε E ⃗ \vec D = \varepsilon \vec E D=εE
磁化强度矢量M
M
⃗
(
r
⃗
)
=
lim
△
V
→
0
∑
i
m
⃗
i
△
V
\vec M(\vec r)=\lim_{\triangle V \to 0} \frac{\sum_i \vec m_i}{\triangle V}
M(r)=△V→0lim△V∑imi
M
⃗
=
χ
m
H
\vec M = \chi_m H
M=χmH
其中
χ
m
\chi_m
χm为磁化率
磁化强度H
H
⃗
(
r
⃗
)
=
B
⃗
(
r
⃗
)
μ
0
−
M
⃗
(
r
⃗
)
\vec H(\vec r)=\frac{\vec B(\vec r)}{\mu_0}-\vec M(\vec r)
H(r)=μ0B(r)−M(r)
∮
l
H
⃗
∙
d
l
⃗
=
I
\oint_l \vec H\bullet d\vec l=I
∮lH∙dl=I
∇
×
H
⃗
(
r
⃗
)
=
J
⃗
(
r
⃗
)
\nabla \times \vec H (\vec r )=\vec J(\vec r)
∇×H(r)=J(r)
B
⃗
=
μ
H
⃗
\vec B=\mu \vec H
B=μH
欧姆定律微分形式
J
⃗
(
r
⃗
)
=
σ
E
⃗
(
r
⃗
)
\vec J(\vec r)=\sigma \vec E(\vec r)
J(r)=σE(r)
其中
σ
\sigma
σ为电导率
热损耗功率
p ( r ⃗ ) = J ⃗ ( r ⃗ ) ∙ E ⃗ ( r ⃗ ) = σ E 2 ( r ⃗ ) p(\vec r)=\vec J(\vec r)\bullet \vec E(\vec r)=\sigma E^2(\vec r) p(r)=J(r)∙E(r)=σE2(r)
边界条件
a
⃗
n
×
(
E
⃗
1
−
E
⃗
2
)
=
0
,
E
1
t
=
E
2
t
\vec a_n \times (\vec E_1 -\vec E_2)=0,\quad \quad E_{1t}=E_{2t}
an×(E1−E2)=0,E1t=E2t
a
⃗
n
×
(
H
⃗
1
−
H
⃗
2
)
=
J
⃗
s
,
H
1
t
=
H
2
t
\vec a_n \times (\vec H_1 -\vec H_2)=\vec J_s,\quad \quad H_{1t}=H_{2t}
an×(H1−H2)=Js,H1t=H2t
a
⃗
n
∙
(
D
⃗
1
−
D
⃗
2
)
=
ρ
s
,
D
1
n
−
D
2
n
=
ρ
s
\vec a_n \bullet (\vec D_1 -\vec D_2) =\rho_s, \quad D_{1n}-D_{2n}=\rho_s
an∙(D1−D2)=ρs,D1n−D2n=ρs
a
⃗
n
∙
(
B
⃗
1
−
B
⃗
2
)
=
0
,
B
1
n
=
B
2
n
\vec a_n \bullet (\vec B_1 - \vec B_2)=0,\quad \quad B_{1n}=B_{2n}
an∙(B1−B2)=0,B1n=B2n
能量
静电场能量密度:
ω
e
=
1
2
ε
E
2
\omega_e = \frac 12 \varepsilon E^2
ωe=21εE2
ω
e
=
1
2
D
⃗
(
r
⃗
)
∙
E
⃗
(
r
⃗
)
\omega_e = \frac 12 \vec D(\vec r )\bullet \vec E(\vec r)
ωe=21D(r)∙E(r)
静磁场能量密度:
ω
m
=
1
2
μ
H
2
\omega_m = \frac 12 \mu H^2
ωm=21μH2
ω
m
=
1
2
H
⃗
(
r
⃗
)
∙
B
⃗
(
r
⃗
)
\omega_m = \frac 12 \vec H(\vec r )\bullet \vec B(\vec r)
ωm=21H(r)∙B(r)
chapter4 动态场
麦克斯韦方程组
{ ∮ l E ⃗ ( r ⃗ , t ) ∙ d l ⃗ = − ∫ S ∂ B ⃗ ( r ⃗ , t ) ∂ t ∙ d S ⃗ , ∇ × E ⃗ ( r ⃗ , t ) = − ∂ B ⃗ ( r ⃗ , t ) ∂ t ∮ l H ⃗ ( r ⃗ , t ) ∙ d l ⃗ = ∫ S ( J ⃗ ( r ⃗ , t ) + ∂ D ⃗ ( r ⃗ , t ) ∂ t ) , ∇ × H ⃗ ( r ⃗ , t ) = J ⃗ ( r ⃗ , t ) + ∂ D ⃗ ( r ⃗ , t ) ∂ t ∮ S D ⃗ ( r ⃗ , t ) ∙ d S ⃗ = ∫ V ρ ( r ⃗ , t ) d V , ∇ ∙ D ⃗ ( r ⃗ , t ) = ρ ( r ⃗ , t ) ∮ S B ⃗ ( r ⃗ , t ) ∙ d S ⃗ = 0 , ∇ ∙ B ⃗ ( r ⃗ , t ) = 0 \begin{cases} \oint_l \vec E(\vec r,t)\bullet d \vec l = -\int_S \frac{\partial \vec B(\vec r,t)}{\partial t} \bullet d \vec S , \quad\quad \nabla \times \vec E(\vec r,t) = - \frac{\partial \vec B(\vec r,t)}{\partial t} \\ \oint_l \vec H(\vec r,t)\bullet d\vec l = \int_S (\vec J(\vec r,t)+\frac{\partial \vec D(\vec r,t)}{\partial t}),\quad \nabla \times \vec H(\vec r,t)=\vec J(\vec r,t)+\frac{\partial \vec D(\vec r,t)}{\partial t}\\ \oint_S \vec D(\vec r,t)\bullet d \vec S = \int_V \rho(\vec r,t)dV,\quad\quad\quad\quad \nabla \bullet \vec D(\vec r,t)=\rho(\vec r,t)\\ \oint_S \vec B(\vec r ,t)\bullet d \vec S =0 ,\quad \quad\quad\quad\quad\quad\quad\quad\nabla \bullet \vec B(\vec r,t)=0 \end{cases} ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∮lE(r,t)∙dl=−∫S∂t∂B(r,t)∙dS,∇×E(r,t)=−∂t∂B(r,t)∮lH(r,t)∙dl=∫S(J(r,t)+∂t∂D(r,t)),∇×H(r,t)=J(r,t)+∂t∂D(r,t)∮SD(r,t)∙dS=∫Vρ(r,t)dV,∇∙D(r,t)=ρ(r,t)∮SB(r,t)∙dS=0,∇∙B(r,t)=0
标量电位更新
E ⃗ = − ∇ Φ − ∂ A ⃗ ∂ t \vec E=-\nabla\Phi -\frac{\partial \vec A}{\partial t} E=−∇Φ−∂t∂A
波动方程
洛伦兹条件(洛伦兹规范):
∇
∙
A
⃗
=
−
μ
ε
∂
Φ
∂
t
\nabla \bullet \vec A=-\mu \varepsilon \frac{\partial \Phi}{\partial t}
∇∙A=−με∂t∂Φ
非齐次波动方程(动态退化可以得到其他规范):
∇
2
Φ
(
r
⃗
,
t
)
−
μ
ε
∂
2
Φ
(
r
⃗
,
t
)
∂
t
2
=
−
ρ
(
r
⃗
,
t
)
ε
\nabla^2 \Phi(\vec r,t)-\mu\varepsilon\frac{\partial^2\Phi(\vec r,t)}{\partial t^2}=- \frac{\rho(\vec r,t)}{\varepsilon}
∇2Φ(r,t)−με∂t2∂2Φ(r,t)=−ερ(r,t)
∇ 2 A ( r ⃗ , t ) − μ ε ∂ 2 A ( r ⃗ , t ) ∂ t 2 = − μ J ⃗ ( r ⃗ , t ) \nabla^2 A(\vec r,t)-\mu\varepsilon\frac{\partial^2 A(\vec r,t)}{\partial t^2}= -\mu \vec J(\vec r,t) ∇2A(r,t)−με∂t2∂2A(r,t)=−μJ(r,t)
坡印亭矢量
S ⃗ ( r ⃗ , t ) ≜ E ⃗ ( r ⃗ , t ) × H ⃗ ( r ⃗ , t ) \vec S (\vec r,t) \triangleq \vec E(\vec r,t)\times \vec H(\vec r,t) S(r,t)≜E(r,t)×H(r,t)
− ∇ ∙ S ⃗ = ∂ ω ∂ t + p -\nabla \bullet \vec S=\frac{\partial\omega}{\partial t}+p −∇∙S=∂t∂ω+p
− ∮ S S ⃗ ( r ⃗ , t ) ∙ d S ⃗ = ∂ ∂ t ∫ V ω ( r ⃗ , t ) d V + ∫ V p ( r ⃗ , t ) d V -\oint_S \vec S(\vec r,t)\bullet d \vec S=\frac{\partial}{\partial t}\int_V \omega(\vec r,t)d V+\int_Vp(\vec r,t)dV −∮SS(r,t)∙dS=∂t∂∫Vω(r,t)dV+∫Vp(r,t)dV
复数表示
u
(
z
,
t
)
=
R
e
{
[
U
0
(
z
)
e
j
ϕ
]
e
j
ω
t
}
=
R
e
{
U
˙
(
z
)
e
j
ω
t
}
u(z,t)=Re\{ [U_0(z)e^{j\phi}]e^{j\omega t} \} = Re \{ \dot{U}(z) e^{j\omega t} \}
u(z,t)=Re{[U0(z)ejϕ]ejωt}=Re{U˙(z)ejωt}
U
˙
(
z
)
=
U
0
(
z
)
e
j
ϕ
\dot{U}(z)=U_0(z)e^{j\phi}
U˙(z)=U0(z)ejϕ
复数形式麦克斯韦方程
∇
×
E
⃗
=
j
ω
B
⃗
\nabla \times \vec E=j\omega \vec B
∇×E=jωB
∇
×
H
⃗
=
J
⃗
+
j
ω
D
⃗
\nabla \times \vec H =\vec J + j \omega \vec D
∇×H=J+jωD
E
⃗
˙
=
a
⃗
x
E
x
˙
(
r
⃗
)
+
a
⃗
y
E
y
˙
(
r
⃗
)
+
a
⃗
z
E
z
˙
(
r
⃗
)
\dot{\vec E}=\vec a_x\dot{E_x}(\vec r)+\vec a_y\dot{E_y}(\vec r)+\vec a_z\dot{E_z}(\vec r)
E˙=axEx˙(r)+ayEy˙(r)+azEz˙(r)
复波动方程
∇ ∙ A ⃗ ( r ⃗ ) = − j ω μ ε Φ ( r ⃗ ) \nabla \bullet \vec A(\vec r) = -j\omega \mu\varepsilon \Phi(\vec r) ∇∙A(r)=−jωμεΦ(r)
∇
2
Φ
(
r
⃗
)
+
ω
2
μ
ε
Φ
(
r
⃗
)
=
−
ρ
(
r
⃗
)
ε
\nabla^2\Phi(\vec r)+\omega^2\mu\varepsilon\Phi(\vec r)=-\frac{\rho(\vec r)}{\varepsilon}
∇2Φ(r)+ω2μεΦ(r)=−ερ(r)
∇
2
A
⃗
(
r
⃗
)
+
ω
2
μ
ε
A
⃗
(
r
⃗
)
=
−
μ
J
⃗
(
r
⃗
)
\nabla^2 \vec A(\vec r)+\omega^2\mu\varepsilon \vec A(\vec r)=-\mu \vec J(\vec r)
∇2A(r)+ω2μεA(r)=−μJ(r)
令
k
2
=
ω
2
μ
ε
k^2=\omega^2\mu\varepsilon
k2=ω2με有:
非齐次亥姆霍兹方程:
∇
2
Φ
(
r
⃗
)
+
k
2
Φ
(
r
⃗
)
=
−
ρ
(
r
⃗
)
ε
\nabla^2\Phi(\vec r)+k^2\Phi(\vec r)=-\frac{\rho(\vec r)}{\varepsilon}
∇2Φ(r)+k2Φ(r)=−ερ(r)
∇
2
A
⃗
(
r
⃗
)
+
k
2
A
⃗
(
r
⃗
)
=
−
μ
J
⃗
(
r
⃗
)
\nabla^2 \vec A(\vec r)+k^2 \vec A(\vec r)=-\mu \vec J(\vec r)
∇2A(r)+k2A(r)=−μJ(r)
齐次亥姆霍兹方程:
∇
2
Φ
(
r
⃗
)
+
k
2
Φ
(
r
⃗
)
=
0
\nabla^2\Phi(\vec r)+k^2\Phi(\vec r)=0
∇2Φ(r)+k2Φ(r)=0
∇
2
A
⃗
(
r
⃗
)
+
k
2
A
⃗
(
r
⃗
)
=
0
\nabla^2 \vec A(\vec r)+k^2 \vec A(\vec r)=0
∇2A(r)+k2A(r)=0
波阻抗 η \eta η
η 0 = μ 0 ε 0 \eta_0=\sqrt{\frac{\mu_0}{\varepsilon_0}} η0=ε0μ0
时均坡印亭矢量 S a v S_av Sav
S ⃗ a v ( r ⃗ ) = 1 T ∫ 0 T S ⃗ ( r ⃗ , t ) d t = 1 2 [ E ⃗ 0 ( r ⃗ ) × H ⃗ 0 ( r ⃗ ) ] c o s ( ϕ e − ϕ n ) \vec S_av(\vec r)=\frac 1T\int_0^T\vec S(\vec r,t)dt=\frac 12 [\vec E_0(\vec r)\times \vec H_0(\vec r)]cos(\phi_e-\phi_n) Sav(r)=T1∫0TS(r,t)dt=21[E0(r)×H0(r)]cos(ϕe−ϕn)
复坡印亭矢量 S ˙ \dot{S} S˙
S ˙ ( r ⃗ ) = 1 2 E ⃗ ( r ⃗ ) × H ⃗ ∗ ( r ⃗ ) = 1 2 E ⃗ 0 ( r ⃗ ) e − j ϕ e × H ⃗ 0 ( r ⃗ ) e j ϕ n = 1 2 [ E ⃗ 0 ( r ⃗ ) × H ⃗ 0 ( r ⃗ ) ] e ϕ e − ϕ n \dot{S}(\vec r)=\frac 12 \vec E(\vec r) \times \vec H^*(\vec r)=\frac 12 \vec E_0(\vec r)e^{-j\phi_e}\times \vec H_0(\vec r )e^{j\phi_n}=\frac 12[\vec E_0(\vec r)\times \vec H_0(\vec r)]e^{\phi_e-\phi_n} S˙(r)=21E(r)×H∗(r)=21E0(r)e−jϕe×H0(r)ejϕn=21[E0(r)×H0(r)]eϕe−ϕn
其中:
S
⃗
a
v
(
r
⃗
)
=
R
e
{
S
˙
(
r
⃗
)
}
\vec S_av(\vec r)=Re\{ \dot{S}(\vec r) \}
Sav(r)=Re{S˙(r)}
复坡印亭定理
− ∮ s S ˙ ( r ⃗ ) ∙ d S ˙ = j 2 ω ∫ V [ ω m − a v ( r ⃗ ) − ω e − a v ( r ⃗ ) ] d V + ∫ V p a v ( r ⃗ ) d V -\oint_s \dot{S}(\vec r)\bullet d \dot{S} =j2\omega \int_V[\omega_{m-av}(\vec r)-\omega_{e-av}(\vec r)]dV +\int_V p_{av}(\vec r)dV −∮sS˙(r)∙dS˙=j2ω∫V[ωm−av(r)−ωe−av(r)]dV+∫Vpav(r)dV
其中:
ω
a
v
(
r
⃗
)
=
1
4
[
E
⃗
(
r
⃗
)
∙
D
⃗
∗
(
r
⃗
)
+
B
⃗
(
r
⃗
)
∙
H
⃗
∗
(
r
⃗
)
]
=
1
4
[
ε
∣
E
⃗
(
r
⃗
)
∣
2
+
μ
∣
H
⃗
(
r
⃗
)
∣
2
]
=
R
e
ω
(
r
⃗
)
\omega_av (\vec r)=\frac 14[\vec E(\vec r)\bullet \vec D^*(\vec r)+\vec B(\vec r)\bullet \vec H^*(\vec r)]=\frac 14[\varepsilon|\vec E(\vec r)|^2 + \mu|\vec H(\vec r)|^2 ]=Re\omega(\vec r)
ωav(r)=41[E(r)∙D∗(r)+B(r)∙H∗(r)]=41[ε∣E(r)∣2+μ∣H(r)∣2]=Reω(r)
p
a
v
(
r
⃗
)
=
1
2
E
⃗
(
r
⃗
)
∙
J
⃗
∗
(
r
⃗
)
=
1
2
σ
∣
E
⃗
(
r
⃗
)
∣
2
=
R
e
p
(
r
⃗
)
p_{av}(\vec r)=\frac 12 \vec E(\vec r )\bullet \vec J^*(\vec r) =\frac 12 \sigma |\vec E(\vec r)|^2 =Rep(\vec r)
pav(r)=21E(r)∙J∗(r)=21σ∣E(r)∣2=Rep(r)
结语
天书虽然可怕,但,他还是你爸爸
也就,100条公式而已,前四章