通信原理教程chapter2(下)

通信原理教程chapter2(下)

假期著

教材用的是《通信原理教程》(第三版)–樊昌信著

不知名网友的建议,这篇blog以公式为主.但因为是基础章节,又不免多写了点字…

随机过程

定义:随机过程可以看成是由一个事件A的全部可能"实现"构成的总体,记为X(A,t).

随机过程的统计特征

  1. 平均值:
    E [ X ( t i ) ] = ∫ − ∞ ∞ x p x i ( x ) d x = m X ( t i ) E[X(t_i)] = \int^{\infty}_{-\infty} x p_{x_i}(x)dx = m_X(t_i) E[X(ti)]=xpxi(x)dx=mX(ti)
  2. 方差:
    D [ X ( t i ) ] = E { X ( t i ) − E [ X ( t i ) ] } 2 D[X(t_i)] = E \{ X(t_i) - E[X(t_i)] \}^2 D[X(ti)]=E{X(ti)E[X(ti)]}2
  3. 自相关函数;
    R X ( t 1 , t 2 ) = E [ X ( t 1 ) X ( t 2 ) ] R_X(t_1,t_2) = E[X(t_1)X(t_2)] RX(t1,t2)=E[X(t1)X(t2)]

平稳随机过程

定义:若一个随机过程X(t)的统计特性与时间起点无关,则称此随机过程是在严格意义上的平稳随机过程,简称严格平稳随机过程.

显然,要实现所有统计特性与时间起点无关是困难的,那么我们就有:

广义随机过程:

定义:若一个随机过程X(t)的平均值,方差和自相关函数与时间起点无关,则称其为广义平稳随机过程.

只要我们想要的符合就行了,即:
E [ X ( t ) ] = m X = c o n s t a n t E[X(t)] = m_X = constant E[X(t)]=mX=constant
D [ X ( t i ) ] = E { X ( t i ) − E [ X ( t i ) ] } 2 = c o n s t a n t D[X(t_i)] = E \{ X(t_i) - E[X(t_i)] \}^2 = constant D[X(ti)]=E{X(ti)E[X(ti)]}2=constant
R X ( t 1 , t 2 ) = R X ( t 1 − t 2 ) = R X ( τ ) R_X(t_1,t_2) = R_X(t_1 - t_2 ) = R_X(\tau) RX(t1,t2)=RX(t1t2)=RX(τ)
其中 τ = t 1 − t 2 \tau = t_1 -t_2 τ=t1t2 ,说明R跟t1和t2的大小无关系,只跟他们的差值有关系

各态历经性

定义:各态历经性表示一个平稳随机过程的一个实现能够经历此过程的所有状态

他会带来一个很好用的性质:

能用时间平均代替统计平均

也就是:
m X ≡ lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 X i ( t ) d t m_X \equiv \lim_{T\rightarrow \infty} \frac1T \int^{T/2}_{-T/2} X_i(t)dt mXTlimT1T/2T/2Xi(t)dt
R X ( τ ) ≡ lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 X i ( t ) X i ( t + τ ) d t R_X(\tau) \equiv \lim_{T\rightarrow \infty} \frac1T \int^{T/2}_{-T/2} X_i(t)X_i(t+\tau)dt RX(τ)TlimT1T/2T/2Xi(t)Xi(t+τ)dt
这个概念重在理解,文末写了点,仅供参考

矩与信号特性的结合

重点

矩(中文)对应矩符号对应信号意义
一阶原点矩 m X = E [ X ( t ) ] m_X = E[X(t)] mX=E[X(t)]直流分量
一阶原点矩的平方 m X 2 m_X^2 mX2直流分量的归一化功率
二阶原点矩 E [ X 2 ( t ) ] E[X^2(t)] E[X2(t)]归一化平均功率
二阶原点矩的平方根 E [ X 2 ( t ) ] \sqrt{E[X^2(t)]} E[X2(t)] 信号的均方根值(有效值)
二阶中心矩 σ X 2 \sigma^2_X σX2交流分量的归一化功率
标准偏差 σ X \sigma_X σX交流分量的均方根值

再论自相关函数

加入了平稳随机过程之后,前面讲到了各种均值,方差所对应的物理意义,现在就来对应一下自相关函数.

性质

简单明了,问题不大

  1. R ( 0 ) = E [ X 2 ( t ) ] = P X R(0) = E[X^2(t)] = P_X R(0)=E[X2(t)]=PX
  2. R ( τ ) = R ( − τ ) R(\tau) = R(-\tau) R(τ)=R(τ)
  3. ∣ R ( τ ) ≤ R ( 0 ) ∣ |R(\tau) \leq R(0)| R(τ)R(0)
  4. R ( ∞ ) = E 2 [ X ( t ) ] R(\infty) = E^2[X(t)] R()=E2[X(t)]
  5. R ( 0 ) − R ( ∞ ) = σ X 2 R(0) - R(\infty) = \sigma_X^2 R(0)R()=σX2
功率谱密度

因为一个功率信号(特别是没周期性的),是没办法直接做傅里叶变换的,所以如果我们想知道他的频谱分布的话,必须得先进行截断,然后在进行傅里叶变换,所以我们定义:
P ( f ) = lim ⁡ T → ∞ ∣ S T ( f ) ∣ 2 T P(f) = \lim_{T\rightarrow \infty} \frac{|S_T(f)|^2}{T} P(f)=TlimTST(f)2
为功率谱密度,其中 S T ( f ) S_T(f) ST(f)为功率信号s(t)截断后的频谱分布.

现在我们用随机过程X(t)来充当这个s(t),那么相应地考察功率谱密度就变成了一个期望值,即:
P X ( f ) = E [ P ( f ) ] = lim ⁡ T → ∞ ∣ S T ( f ) ∣ 2 T P_X(f) = E[P(f)] = \lim_{T\rightarrow\infty} \frac{|S_T(f)|^2}{T} PX(f)=E[P(f)]=TlimTST(f)2
这里先直接往下推导,如果先求得这个,我们就得对后式进行化简,不一一讲解,过程如下:
∣ S T ( f ) ∣ 2 T = E [ 1 T ∫ − T / 2 T / 2 s T ( t ) e − j ω t d t ∫ − T / 2 T / 2 s T ∗ ( t ^ ) e − j ω t ^ d t ^ ] \frac{|S_T(f)|^2}{T} =E[\frac1T \int^{T/2}_{-T/2}s_T(t)e^{-j\omega t}dt \int^{T/2}_{-T/2}s_T\ast(\hat{t})e^{-j\omega \hat{t}}d\hat{t}] TST(f)2=E[T1T/2T/2sT(t)ejωtdtT/2T/2sT(t^)ejωt^dt^]
= E [ 1 T ∫ − T / 2 T / 2 s ( t ) e − j ω t d t ∫ − T / 2 T / 2 s ( t ^ ) e − j ω t ^ d t ^ ] \quad\quad\quad\quad =E[\frac1T \int^{T/2}_{-T/2}s(t)e^{-j\omega t}dt \int^{T/2}_{-T/2}s(\hat{t})e^{-j\omega \hat{t}}d\hat{t}] =E[T1T/2T/2s(t)ejωtdtT/2T/2s(t^)ejωt^dt^]
= E [ 1 T ∫ − T / 2 T / 2 ∫ − T / 2 T / 2 s ( t ) s ( t ^ ) e − j ω ( t − t ^ ) d t d t ^ ] \quad\quad\quad\quad =E[\frac1T \int^{T/2}_{-T/2}\int^{T/2}_{-T/2}s(t)s(\hat{t}) e^{-j\omega (t-\hat{t})}dtd\hat{t}] =E[T1T/2T/2T/2T/2s(t)s(t^)ejω(tt^)dtdt^]

由平稳随机过程自相关函数的定义
∣ S T ( f ) ∣ 2 T = 1 T ∫ − T / 2 T / 2 ∫ − T / 2 T / 2 R ( t − t ^ ) e − j ω ( t − t ^ ) d t d t ^ \frac{|S_T(f)|^2}{T} =\frac1T \int^{T/2}_{-T/2}\int^{T/2}_{-T/2}R(t-\hat{t})e^{-j\omega (t-\hat{t})}dtd\hat{t} TST(f)2=T1T/2T/2T/2T/2R(tt^)ejω(tt^)dtdt^
变量代换,放到原式:
P X ( w ) = lim ⁡ T → ∞ ∫ − T T ∫ − T 2 − τ T 2 − τ R X ( τ ) e − j w τ d τ d t 2 P_X(w)=\lim_{ T \rightarrow\infty}\int^{T}_{-T}\int^{\frac{T}{2}-\tau}_{\frac{-T}{2}-\tau}R_X{(\tau)}e^{-jw\tau}d\tau dt_2 PX(w)=TlimTT2Tτ2TτRX(τ)ejwτdτdt2
= lim ⁡ T → ∞ 1 T { ∫ 0 T ∫ − T 2 − τ T 2 − τ R X ( τ ) e − j w τ d τ d t 2 + ∫ − T 0 ∫ − T 2 − τ T 2 + τ R X ( τ ) e − j w τ d τ d t 2 } =\lim_{ T \rightarrow\infty }\frac{1}{T}\{ \int^{T}_{0}\int^{\frac{T}{2}-\tau}_{-\frac{T}{2}-\tau}R_X{(\tau)}e^{-jw\tau}d\tau dt_2 + \int^{0}_{-T}\int^{\frac{T}{2}+\tau}_{-\frac{T}{2}-\tau}R_X{(\tau)}e^{-jw\tau}d\tau dt_2 \} =TlimT1{0T2Tτ2TτRX(τ)ejwτdτdt2+T02Tτ2T+τRX(τ)ejwτdτdt2}
= lim ⁡ T → ∞ 1 T { ∫ 0 T ( T − τ ) R X ( τ ) e − j w τ d τ + ∫ − T 0 ( T + τ ) R X ( τ ) e − j w τ d τ } = \lim_{ T \rightarrow\infty }\frac{1}{T}\{ \int^{T}_{0}(T-\tau)R_X{(\tau)}e^{-jw\tau}d\tau +\int^{0}_{-T}(T+\tau)R_X{(\tau)}e^{-jw\tau}d\tau \} =TlimT1{0T(Tτ)RX(τ)ejwτdτ+T0(T+τ)RX(τ)ejwτdτ}
= lim ⁡ T → ∞ { ∫ 0 T ( 1 − τ T ) e − j w τ d τ + ∫ − T 0 ( 1 + τ T ) e − j w τ d τ = \lim_{ T \rightarrow\infty}\{ \int^{T}_{0}(1-\frac{\tau}{T} )e^{-jw\tau}d\tau + \int^{0}_{-T}(1+\frac{\tau}{T} )e^{-jw\tau}d\tau =Tlim{0T(1Tτ)ejwτdτ+T0(1+Tτ)ejwτdτ
= lim ⁡ T → ∞ { ∫ − T T ( 1 − ∣ τ ∣ T ) R X ( τ ) e − j w τ d τ } = \lim_{ T \rightarrow\infty} \{\int^{T}_{-T} (1-\frac{|\tau|}{T})R_X{(\tau)}e^{-jw\tau}d\tau \} =Tlim{TT(1Tτ)RX(τ)ejwτdτ}

= ∫ − ∞ ∞ R X ( τ ) e − j w τ d τ = \int_{-\infty}^{\infty}R_X (\tau)e^{-jw\tau}d\tau =RX(τ)ejwτdτ

这个证明是较为广泛流传的一个证明,但我个人不太喜欢,最近在看他1930年的论文是怎么证明的,如有新的结果在贴出来吧.

得到的结果令人震撼,就是功率谱密度和自相关函数是一对傅里叶变换对.,即:
P X ( f ) = ∫ − ∞ ∞ R ( τ ) e − j ω τ d τ P_X(f) = \int^\infty_{-\infty} R(\tau)e^{-j\omega\tau}d\tau PX(f)=R(τ)ejωτdτ
R ( τ ) = ∫ − ∞ ∞ P X ( f ) e j ω τ d f R(\tau) = \int^{\infty}_{-\infty}P_X(f)e^{j\omega\tau}df R(τ)=PX(f)ejωτdf

这也是大名鼎鼎的维纳-辛钦定理
重点在于他是建立在傅里叶变换上的,也就是说,这个关系仅仅适用于平稳信号.

这里有一个重点要掌握的就是白噪声的各种计算,由于过于简单,大家自己看书吧.

高斯过程

这里老师只让记住一个结论:高斯随机过程通过线性系统后输出任为高斯随机过程

这里的话,可以联系一个概率论里面的中心极限定理

但是后面我会补上一篇博客(还没写完),给大家介绍一下:

  1. 贝塞尔函数
  2. 协方差
  3. 高斯过程
  4. 短时傅里叶变换
  5. 莱斯分布
  6. 相位延迟与群响应
  7. 离散余弦变换

一些正常一点点的常识,不过大家先打个底,我写课外的东西的话,八九不离十是天书+数学公式…
所以这里先跳过

信号与系统(下)

这一部分主要讲信号通过系统

确知信号通过系统

这个就是信号与系统学的东西.讲了也多余.
主要记住的是:

无失真传输条件:

幅度常数,相位线性.即:
y ( t ) = k x ( t − t d ) d θ d ω = t d y(t) = kx(t-t_d) \quad\quad \frac{d\theta}{d\omega} = t_d y(t)=kx(ttd)dωdθ=td

随机信号通过线性系统

虽说不要讲太多的东西,但在这里还是想阐明一下信号与系统和平稳随机过程的问题.其实我们需要意识到一点就是:以我们所学的仅有的信号与系统的知识,是没办法解决非平稳信号的.理由也很简单,因为傅里叶变换在频域幅度谱上面是没有时间信息的,更多的内容后在后面的blog里面讲到.你可以回想一下,我们怎么才能在连续(时间内)观察一个信号的频谱呢?

下面接回课本:

这里说的其实很简单,就是把原来的信号改成随机过程的期望就完事了.
E [ Y ( t ) ] = E [ ∫ 0 ∞ h ( τ ) X ( t − τ ) d τ ] = ∫ 0 ∞ h ( τ ) E [ X ( t − τ ) ] d τ E[Y(t)] = E[\int^\infty_{0}h(\tau)X(t-\tau)d\tau] = \int^\infty_{0}h(\tau)E[X(t-\tau)]d\tau E[Y(t)]=E[0h(τ)X(tτ)dτ]=0h(τ)E[X(tτ)]dτ
由平稳随机过程:
E [ X ( t − τ ) ] = E [ X ( t ) ] = k , k = c o n s t a n t E[X(t-\tau)]=E[X(t)] = k , k=constant E[X(tτ)]=E[X(t)]=k,k=constant
提到积分号后面来:
E [ Y ( t ) ] = k ∫ 0 ∞ h ( τ ) d τ E[Y(t)] = k\int^\infty_{0}h(\tau)d\tau E[Y(t)]=k0h(τ)dτ
由傅里叶变换:
∫ 0 ∞ h ( τ ) d τ = H ( 0 ) \int^\infty_{0}h(\tau)d\tau = H(0) 0h(τ)dτ=H(0)
回代得:
E [ Y ( t ) ] = k H ( 0 ) E[Y(t)] = k H(0) E[Y(t)]=kH(0)

还有两条和自适应函数相关公式:
R Y ( t 1 , t 1 + τ ) = R Y ( τ ) R_Y(t_1,t_1+\tau) = R_Y(\tau) RY(t1,t1+τ)=RY(τ)
P Y ( f ) = ∣ H ( f ) ∣ 2 P X ( f ) P_Y(f) = |H(f)|^2P_X(f) PY(f)=H(f)2PX(f)

结语

关于blog

这个第二章太长了,也启发了我,如果想写理解的话不能顺着书讲,下次可能会尝试新的思路去构blog的思路.也许不会面面俱到了.但是总感觉通信原理需要和电磁场有一点点学法上的不同.我觉得通信原理更重要把握的是一些基本思想,一些工程手段.而不是像电磁场那样掌握个公式,然后用麦克斯韦穿针引线就搞定了,再加上我觉得通信原理比电磁场简单几十倍…

关于第二章

其实这本书的逻辑结构和大多数教材差不多,都是在讲这门课之前,先要帮你回顾和结合之前一些你学过的课程,只是这门课所需的基础有点多,才要写到两章而已…这章主要主要回顾和结合信号与系统和概率论,而如果看过奥本海默的信号与系统和自学过概率论课程没讲的内容的同学…这章几乎是不用学的…

关于随机过程的一点点理解

其实我觉得蛮好解释的,就相当于一百个人会有一百种人生,当你死去之后,你的每一个时间点所做的东西是固定的,真正随机的是你在活的过程中的经历,体会,这才构成了你的随机过程X(A,t)里面的A.

各态历经的话,你可以想想一个复联3里面的一个情节:奇异博士看了1400万次复联4的结局都是失败的,只有一个结局是成功的.统计平均是建立在同一个时刻上的统计,比方说是灭霸打响指前的那一个时刻,来统计判断这个时刻革命是成功还是失败了.时间平均是很简单粗暴的等隔抽样求均值.比方说我就看你某个复联4的结局的一些关键节点来判断就完事了.各态历经性说的时间平均代替统计平均就是,我看着看着都知道我凉了,不用真的到凉的那一个时刻才让你告诉我我凉了.

当然了,在纯理性的结论面前,任何比喻都是失妥的,大家看看就好…

如果你想请我吃个南五的话

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小何的芯像石头

谢谢你嘞,建议用用我的链接

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值