Tensorflow(十三)CNN

本文介绍了TensorFlow中卷积神经网络(CNN)的常见技巧,包括深度可分离卷积、数据增强和迁移学习。探讨了CNN的结构特点,如卷积层、池化层及其在分类和物体分割任务中的应用。同时,阐述了卷积操作的作用,如局部连接、参数共享和padding,以及池化操作的目的。文章还详细解释了深度可分离卷积的原理,指出其在减少计算量和提升效率方面的优势,并通过10monkeys实战案例展示了迁移学习的应用。
摘要由CSDN通过智能技术生成

一 常见技巧:

卷积神经网络:卷积操作,池化操作

深度可分离卷积:用精度损失换取速率提升

数据增强

迁移学习

二 结构特点:

卷积神经网络:

(卷积层 + 池化层) * N + 全连接层 * M

分类任务

全卷积神经网络: 

(卷积层 + 池化层) * N + 反卷积层 * M

由于反卷积层的存在,可以使得输入输出的尺寸一样大,可用于物体分割

三 卷积操作

解决的问题:

全连接神经网络参数过多,难以计算,而且容易过拟合。

局部连接:图像的区域性。

参数共享:图像特性与位置无关,脸在图片的哪个地方都是脸。

padding:在外圈补0,可以使输入输出size一致

处理多通道

四 池化操作

用于减少计算量,最大程度保存信息

不重叠不补零

参数为步长和池化核的大小,没有用于求导的参互是

一定程度的平移鲁棒(如果图像进行微小的平移,那么先进行池化操作的话,可以保存周围的信息,所以稍后用卷积得到特征就会相同。不然的话,进过细微平移后的图片会产生不同的特征核)

损失零空间位置精度

五 深度可分离卷积

启发于google的Inception v3模型

不同是视野域,提升效率。

Image result for inception v3模型

引入深度可分离卷积:

图(a)代表标准卷积。

假设输入特征图尺寸为,卷积核尺寸为,输出特征图尺寸为,标准卷积层的参数量为。

图(b)代表深度卷积

图(c)代表逐点卷积,两者合起来就是深度可分离卷积。

深度卷积负责滤波,尺寸为(DK,DK,1),共M个,作用在输入的每个通道上;

逐点卷积负责转换通道,尺寸为(1,1,M),共N个,作用在深度卷积的输出特征映射上。

深度卷积参数量为  ,逐点卷积参数量为  ,所以深度可分离卷积参数量是标准卷积的。

六 10monkeys实战

迁移学习:使用其他任务中训练好的模型参数去

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值