论文笔记--InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning

1. 文章简介

  • 标题:InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
  • 作者:Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi
  • 日期:NeurIPS
  • 期刊:2023

2. 文章概括

  文章提出了一种基于指令微调的多模态语言模型InstructBLIP,模型提出了一种可将指令信息编码的Query Transformer,并在13个指令微调数据集上进行模型训练。模型在多个测试集上得到了SOTA表现,且实验表明基于InstructBLIP进行SFT的模型在多个下游任务上取得更好的表现。

3 文章重点技术

3.1 数据集构建

  如下图所示,文章收集了来自11个任务的26个数据集,将其中13个数据集作为held-in datasets(图中黄色部分),将held-in datasets的training sets用于指令微调训练,将held-in datasets的dev/test sets用于held-in 评估;将另外13个数据集作为held-out datasets(图中白色部分),该部分数据又可进一步划分为1) 模型训练(held-in)未见过的数据&模型训练见过的任务类型 2)模型训练(held-in)未见过的数据&模型训练未见过的任务类型 ,后者的难度更大。
数据集

3.2 特征提取

  文章的整体算法框架基于BLIP-2模型。如下图左所示,BLIP-2使用了一个Query-Transformer模块:Q-Former 将(frozen) Image Encoder编码生成的视觉特征作为输入,将通过cross-attention模块得到编码后的视觉特征向量作为输出,Q-Former的输出再经过一个全连接层之后传入到一个(Frozen) LLM。
  不同于BLIP-2,文章提出一种Instruction-aware 的特征提取方法,如下图右所示,Q-Former会同时将Instruction和Queries通过self-attention层交互得到指令相关的特征向量,再和图像编码进行cross attention。
Q-Former

3.3 数据平衡

  为了使不同来源的数据尽可能平衡且不至于对小样本的数据集过拟合,文章提出下述采样方法:给定 D D D个数据集,每个大小分别为 { S 1 , … , S D } \{S_1, \dots, S_D\} {S1,,SD},则训练集从数据集 d d d中采样一个样本的概率为 S d ∑ i = 1 D S i \frac {\sqrt{S_d}}{\sum_{i=1}^D \sqrt{S_i}} i=1DSi Sd 。在此基础上,文章降低了多选题的权重,增加了开放式文本生成的权重。下表中w/o data balancing表示不采用数据平衡策略进行训练的表现,可以看到数据平衡对held-in 和held-out评估均有小幅提升。
balanced data

3.4 模型实现

  文章选择了BLIP-2的FlanT5-XL, FlanT5-XXl, Vicuna-7B和Vicuna-13B作为模型底座进行微调。训练过程中冻结image encoder 和LLM的参数,只更新Q-Former的参数即可。

3.5 多任务学习&指令微调

  为了排除多任务学习对模型表现的影响,文章设计了两个实验1)不采用指令,直接用原始的训练输入-输出进行训练2)采用指令[Task:Dataset]进行训练。如下图所示,在held-in评估集上,多任务学习和InstructBLIP表现都很好;在held-out评估集上,指令微调模型表现明显优于多任务学习。说明指令微调是提升模型zero-shot泛化能力的关键。
多任务&指令

4. 文章亮点

  文章通过对BLIP-2模型进行Instruction aware的指令微调得到了模型InstructBLIP,模型在多个验证集上达到了SOTA表现,大幅提升了多模态模型的zero-shot泛化能力。多个实例表明InstructBLIP可生成更加精准的回复。且实验表明,InstructBLIP可作为更强大的模型底座支撑下游任务。

5. 原文传送门

InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning

  • 21
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值