论文笔记--Llama3 report

1. 文章简介

  • 标题:Llama3 Report
  • 作者:Meta
  • 日期:2024.04

2. 性能升级

  Llama3系列本次开源了8B和70B模型,在多个benchmarks上取得了SOTA表现。具体评估细节可以参见github
meta3-performance
  本次验证增加了高质量的人工评估集,涵盖12种场景(寻求建议、头脑风暴、分类、闭源QA、编码、创意写作、信息抽取、角色扮演、开放QA、推理、重写、摘要)共计1800个prompts。Llama3在这些prompts上表现超过GPT-3.5等模型:
winrates

3. 模型升级

3.1 模型架构升级

  相比于Llama2[1],Llama3在模型架构上没有明显改变,仍采用transformer的decoder架构,模型架构升级如下

  • 词表大小由32K升级为128K
  • 采用GQA编码(Llama2也采用了GQA)
  • 上下文长度从4K增加为8k(8192)个t
### 使用 LLaMA-Factory 对 LLaMA3 模型进行微调 #### 准备工作环境 为了确保顺利运行,需先准备服务器上的开发环境。这包括但不限于更新 `pip` 到最新版本以便更好地管理Python包。 ```bash python -m pip install --upgrade pip ``` #### 下载并配置 LLaMA-Factory 获取 LLaMA-Factory 的源码对于后续操作至关重要。通过GitHub仓库地址下载项目文件,并按照官方说明完成必要的设置[^3]。 ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory ``` #### 安装依赖项 安装所需的Python库和其他资源是必不可少的一环。通常情况下,这些需求会被记录在一个名为 `requirements.txt` 文件里;执行下面这条指令即可自动处理好所有的依赖关系: ```bash pip install -r requirements.txt ``` #### 数据预处理 针对特定任务调整模型之前,准备好训练数据集非常重要。根据具体应用场景的不同,可能涉及到文本清洗、分词等一系列准备工作。这部分的具体实现会依据所使用的数据集而变化,在此不做详述。 #### 开始微调过程 一旦前期准备工作就绪,则可以通过指定参数启动实际的微调流程。具体的命令行选项取决于个人的需求以及硬件条件等因素。例如,如果希望利用GPU加速计算速度的话,可以在命令中加入相应的标志位。 ```bash python finetune.py \ --model_name_or_path path_to_model \ --train_file path_to_train_data.jsonl \ --output_dir output_directory \ --per_device_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 3\ --save_steps 10_000 \ --logging_steps 1_000 \ --do_train ``` 上述命令中的各个参数可以根据实际情况灵活调整,比如批量大小(`batch size`)、学习率(`learning rate`)等超参的选择应该基于实验结果不断优化[^1]。 #### 可视化调试 借助于 Gradio 提供的强大功能,能够轻松搭建起直观易用的操作界面,使得开发者能够在浏览器端实时查看模型的表现情况。只需简单输入一条命令就能开启这个便捷的功能[^2]: ```bash llamafactory-cli webui ``` 这样不仅有助于监控整个训练进程的状态,同时也便于后期对生成的内容质量做出评估。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值