脉冲编码方法
目前较为常见的神经编码方式主要包括频率编码(rate coding)、时间编码(temporal coding)、bursting编码和群编码(population coding)等(见图). 具体的脉冲在持续时间、振幅或形状上都可能有所不同,但在神经编码研究中, 它们通常被视为相同的定型事件.
频率编码主要考察脉冲发放率(firing rate), 即神经元发放的脉冲数量在其所对应记录时间上的平均值. 刺激的强弱程度可由神经元发放脉冲的频率反映,强烈的刺激将导致更为高频的脉冲序列[77],而序列内部存在的时间结构, 例如内部脉冲间隔(interspike interval, ISI)不被考虑. 频率编码被视为是对神经元输出的一种量化衡量, 在脉冲神经网络的深度学习领域,特别是在经由训练好的ANN网络向SNN转换的相关工作中,可将脉冲发放率与ANN中连续的输出值等价, 这使得频率编码得到了大量的使用. 相对于频率编码, 时间编码更加注重在时间结构上的差异, 除了完整的脉冲时间模式(temporalpattern) 之外, 从接受刺激到发放首个脉冲的时间以及脉冲之间的时序逻辑都被认为存在编码重要信息的可能,其中前者被称为首个脉冲时间编码(time-to-first-spike coding),后者被称为排序编码(rank order coding). 频率编码的概念在早期被广泛接受,但一些研究表明,其忽略时间结构仅计算脉冲数量的方式不利于信息的高效率传输,相较于时间编码可能需要更长的记录时间或更多的神经元参与。
Bursting 是广泛存在于大脑中的一种神经元活动模式,指神经元在某段时间内密集、快速地激发脉冲,随后进入较长时间静息的行为. 早期人们通常认为bursting 包含多个脉冲仅仅是为了增加信息传递的可靠性, 2003 年, Izhikevich 揭示了突触后神经元存在的阈下膜电位共振现象, 这导致不同神经元针对bursting频率产生特异性选择,并可能为神经元间进行选择性通信提供了有效的编码机制。