脉冲神经网络中LIF模型简介
文章借鉴电子书Neuronal Dynamics
LIF模型 Integrate-And-Fire Models
神经元动力学:被认为是一个求和(“整合”)过程,我们用一个正式的阈值
ϑ
ϑ
ϑ来描述脉冲起始的临界电压。如果电压
u
i
(
t
)
u_i(t)
ui(t)(包含所有输入的总和)从最底到达阈值
ϑ
ϑ
ϑ,我们说神经元
i
i
i发出一个脉冲。阈值越过的时刻定义了触发时间
t
i
(
f
)
t_i^{(f)}
ti(f)。
该模型利用了一个事实,即给定神经元的神经元动作电位总是具有大致相同的形式。如果动作电位的形状总是相同的,那么该形状就不能用来传递信息:相反,信息包含在有无脉冲中。因此,动作电位被降低为在某个精确时刻发生的“事件”。
Integrate-and-Fire 模型由两个独立部分组成,这两部分都是模型所必须的,第一,一个描述膜电位
u
i
(
t
)
u_i(t)
ui(t)的演化方程;第二,产生脉冲的机制。
"发射时间 "是指一个特定的神经元发出动作电位
t
(
f
)
t^{(f)}
t(f)的时刻。漏积分-发射模型中的发射时间
t
(
f
)
t^{(f)}
t(f)由阈值准则
t
(
f
)
t^{(f)}
t(f)定义:
u
(
t
f
)
=
ϑ
u(t^{f})=\vartheta
u(tf)=ϑ。
脉冲峰值的形式没有被明确描述。而是注意到发射时间,并在
t
(
f
)
t^{(f)}
t(f)之后立即将电位重置为新值
u
r
<
ϑ
u{_r}< \vartheta
ur<ϑ。
lim
δ
↦
0
;
δ
>
0
u
(
t
(
f
)
+
δ
)
=
u
r
\lim_{\delta \mapsto0;\delta > 0} u(t^{(f)}+\delta )=u_{r}
δ↦0;δ>0limu(t(f)+δ)=ur
对于神经元
i
i
i的发射时间,我们写
t
i
(
f
)
t_{i}^{(f)}
ti(f),其中f=1,2,…是脉冲的标签。从形式上看,我们可以把一个神经元
i
i
i的脉冲序列表示为发射时间的序列:
s
i
(
t
)
=
∑
f
δ
(
t
−
t
i
(
f
)
)
s_{i}(t)=\sum_{f}\delta (t-t_{i}^{(f)})
si(t)=f∑δ(t−ti(f))
其中δ(x)是前面介绍的狄拉克
δ
\delta
δ函数,
δ
(
x
)
=
0
\delta(x)=0
δ(x)=0,
x
≠
0
x≠0
x=0,
∫
−
∞
+
∞
δ
(
x
)
=
1
\int_{-\infty }^{+\infty }\delta (x)=1
∫−∞+∞δ(x)=1。因此,脉冲被简化为时间上的点(图1.8)
图1.8:在脉冲神经元的正式模型中,动作电位(虚线)的形状通常被
δ
\delta
δ脉冲(垂直线)所代替。脉冲后的负超调(峰后电位)被膜电位的“重置”值
u
r
u_r
ur所取代。脉冲由阈值在
t
i
(
1
)
t_{i}^{(1)}
ti(1)处触发。
(1)膜电位演化的线性微分方程
变量
u
i
u_i
ui描述了神经元
i
i
i的膜电位的瞬时值。在没有任何输入的情况下,电位处于其静息值
u
r
e
s
t
u_{rest}
urest。如果实验人员向神经元注入电流
I
(
t
)
I(t)
I(t),或者如果神经元接受来自其他神经元的突触输入,潜在的
u
i
u_i
ui将偏离其静息值。
为了得到瞬时电压
u
i
(
t
)
−
u
r
e
s
t
u_i(t) - u_{rest}
ui(t)−urest与输入电流
I
(
t
)
I(t)
I(t)之间的联系方程,通过电学理论中的基本定律。神经元被细胞膜包围,细胞膜是一种很好的绝缘体。如果一个短电流脉冲I(t)被注入神经元,额外的电荷
q
=
∫
I
(
t
′
)
d
t
′
q=∫I(t ')dt '
q=∫I(t′)dt′必须到达某个地方:它将向细胞膜充电(图A)。因此,细胞膜就像一个容量为
C
C
C的电容器。因为绝缘体并不完美,电荷会随着时间的推移慢慢地通过细胞膜。因此,细胞膜可以用有限的防漏系数
R
R
R来表征。
用基本电路表示来LIF模型,包括电容器C与电阻R并联,由电流
I
(
t
)
I(t)
I(t)驱动;见图上。
如果驱动电流
I
(
t
)
I(t)
I(t)消失,通过电容器的电压由电池电压
u
r
e
s
t
u_{rest}
urest提供。
分析电路:运用电流守恒定律:
I
(
t
)
=
I
R
+
I
C
I(t)=I_R+I_C
I(t)=IR+IC
其中,
I
R
I_R
IR是通过电阻R的电流,根据欧姆定律
I
R
=
u
R
/
R
I_R=u_R/R
IR=uR/R,其中
u
R
=
u
−
u
r
e
s
t
u_R=u−u_{rest}
uR=u−urest是通过电阻的电压,
I
C
I_C
IC是给电容器C充电。由电容C=q/u(其中q是电荷,u是电压)的定义,可以得到电容电流
I
C
=
d
q
/
d
t
=
C
d
u
d
t
I_C=dq/dt=C\tfrac{du}{dt}
IC=dq/dt=Cdtdu。因此:
将Eq.(1.4)乘以R,并引入时间常数τm=RC。这就产生了标准形式:
我们称
u
u
u为膜电位,
τ
m
\tau _m
τm为神经元的膜时间常数。
从数学的角度来看,Eq.(1.5)是一个线性微分方程。从电气工程师的角度来看,它是一个漏泄的积分器(leaky integrator)或 RC 电路,其中电阻R和电容C并联。从神经学家的观点来看,式(1.5)称为被动膜方程。Eq.(1.5)的解是什么?假设,无论出于什么原因,在t=0时,膜电势的值为
u
r
e
s
t
+
Δ
u
u_{rest}+Δu
urest+Δu。对于
t
>
0
t>0
t>0,输入为
I
(
t
)
=
0
I(t)=0
I(t)=0。我们直觉地认为,如果我们等待的时间足够长,膜电位就会降低到它的静息值
u
r
e
s
t
u_{rest}
urest。确实,初始条件为
u
(
t
0
)
=
u
r
e
s
t
+
Δ
u
u(t0)=u_{rest}+Δu
u(t0)=urest+Δu的微分方程的解为:
解(1.6)的有效性可以通过对方程两边求导来验证。因为它是在没有输入的情况下的解,所以它有时被称为“自由”解。
在一个简单的例子中研究Eq.(1.5)定义的被动膜的动力学。假设被动膜受到恒定的输入电流
I
(
t
)
=
I
0
I(t)=I_0
I(t)=I0的刺激,该电流从
t
=
0
t=0
t=0开始,结束于时间
t
=
Δ
t=Δ
t=Δ。为了简便起见,我们假设
t
=
0
t=0
t=0时的膜电位处于其静息值,即初始条件:
u
(
0
)
=
u
r
e
s
t
u(0)=u_{rest}
u(0)=urest。
0
<
t
<
Δ
0< t < Δ
0<t<Δ的解:
如果输入电流不停止,则膜电位(1.7)在
t
→
∞
t→∞
t→∞时趋近于u(∞)的渐近值
u
(
∞
)
=
u
r
e
s
t
+
R
I
0
u(∞)=u_{rest}+RI_0
u(∞)=urest+RI0。可以通过查看图1.6中RC电路的电路图来理解这个结果。一旦达到稳定状态,电容上的电荷就不再改变。所有的输入电流必须通过电阻器。因此,电阻处的稳态电压为
R
I
0
RI_0
RI0,因此总膜电压为
u
r
e
s
t
+
R
I
0
u_{rest}+RI_0
urest+RI0。
欧拉方法解Eq.(1.5)的微分方程:
d
u
d
t
=
u
(
t
+
1
)
−
u
(
t
)
\frac{du }{dt} =u(t+1)-u(t)
dtdu=u(t+1)−u(t),
对于Eq.(1.5)来说:运用欧拉方法解该线性方程:
u
(
t
)
=
(
1
−
1
τ
m
)
u
(
t
−
1
)
+
1
τ
m
u
r
e
s
t
+
R
I
(
t
)
τ
m
u(t)=(1-\frac{1}{\tau _m})u(t-1)+\frac{1}{\tau _m}u_{rest}+\tfrac{RI(t)}{\tau _m}
u(t)=(1−τm1)u(t−1)+τm1urest+τmRI(t)