LIF模型简介

脉冲神经网络中LIF模型简介

文章借鉴电子书Neuronal Dynamics

LIF模型 Integrate-And-Fire Models

  神经元动力学:被认为是一个求和(“整合”)过程,我们用一个正式的阈值 ϑ ϑ ϑ来描述脉冲起始的临界电压。如果电压 u i ( t ) u_i(t) ui(t)(包含所有输入的总和)从最底到达阈值 ϑ ϑ ϑ,我们说神经元 i i i发出一个脉冲。阈值越过的时刻定义了触发时间 t i ( f ) t_i^{(f)} ti(f)
  该模型利用了一个事实,即给定神经元的神经元动作电位总是具有大致相同的形式。如果动作电位的形状总是相同的,那么该形状就不能用来传递信息:相反,信息包含在有无脉冲中。因此,动作电位被降低为在某个精确时刻发生的“事件”。
  Integrate-and-Fire 模型由两个独立部分组成,这两部分都是模型所必须的,第一,一个描述膜电位 u i ( t ) u_i(t) ui(t)的演化方程;第二,产生脉冲的机制。
"发射时间 "是指一个特定的神经元发出动作电位 t ( f ) t^{(f)} t(f)的时刻。漏积分-发射模型中的发射时间 t ( f ) t^{(f)} t(f)由阈值准则 t ( f ) t^{(f)} t(f)定义: u ( t f ) = ϑ u(t^{f})=\vartheta u(tf)=ϑ
脉冲峰值的形式没有被明确描述。而是注意到发射时间,并在 t ( f ) t^{(f)} t(f)之后立即将电位重置为新值 u r < ϑ u{_r}< \vartheta ur<ϑ lim ⁡ δ ↦ 0 ; δ > 0 u ( t ( f ) + δ ) = u r \lim_{\delta \mapsto0;\delta > 0} u(t^{(f)}+\delta )=u_{r} δ0;δ>0limu(t(f)+δ)=ur
对于神经元 i i i的发射时间,我们写 t i ( f ) t_{i}^{(f)} ti(f),其中f=1,2,…是脉冲的标签。从形式上看,我们可以把一个神经元 i i i的脉冲序列表示为发射时间的序列: s i ( t ) = ∑ f δ ( t − t i ( f ) ) s_{i}(t)=\sum_{f}\delta (t-t_{i}^{(f)}) si(t)=fδ(tti(f))
其中δ(x)是前面介绍的狄拉克 δ \delta δ函数, δ ( x ) = 0 \delta(x)=0 δ(x)=0 x ≠ 0 x≠0 x=0, ∫ − ∞ + ∞ δ ( x ) = 1 \int_{-\infty }^{+\infty }\delta (x)=1 +δ(x)=1。因此,脉冲被简化为时间上的点(图1.8)
在这里插入图片描述
图1.8:在脉冲神经元的正式模型中,动作电位(虚线)的形状通常被 δ \delta δ脉冲(垂直线)所代替。脉冲后的负超调(峰后电位)被膜电位的“重置”值 u r u_r ur所取代。脉冲由阈值在 t i ( 1 ) t_{i}^{(1)} ti(1)处触发。

(1)膜电位演化的线性微分方程

在这里插入图片描述
  变量 u i u_i ui描述了神经元 i i i的膜电位的瞬时值。在没有任何输入的情况下,电位处于其静息值 u r e s t u_{rest} urest。如果实验人员向神经元注入电流 I ( t ) I(t) I(t),或者如果神经元接受来自其他神经元的突触输入,潜在的 u i u_i ui将偏离其静息值。
  为了得到瞬时电压 u i ( t ) − u r e s t u_i(t) - u_{rest} ui(t)urest与输入电流 I ( t ) I(t) I(t)之间的联系方程,通过电学理论中的基本定律。神经元被细胞膜包围,细胞膜是一种很好的绝缘体。如果一个短电流脉冲I(t)被注入神经元,额外的电荷 q = ∫ I ( t ′ ) d t ′ q=∫I(t ')dt ' q=I(t)dt必须到达某个地方:它将向细胞膜充电(图A)。因此,细胞膜就像一个容量为 C C C的电容器。因为绝缘体并不完美,电荷会随着时间的推移慢慢地通过细胞膜。因此,细胞膜可以用有限的防漏系数 R R R来表征。
  用基本电路表示来LIF模型,包括电容器C与电阻R并联,由电流 I ( t ) I(t) I(t)驱动;见图上。
  如果驱动电流 I ( t ) I(t) I(t)消失,通过电容器的电压由电池电压 u r e s t u_{rest} urest提供。
  分析电路:运用电流守恒定律: I ( t ) = I R + I C I(t)=I_R+I_C I(t)=IR+IC
其中, I R I_R IR是通过电阻R的电流,根据欧姆定律 I R = u R / R I_R=u_R/R IR=uR/R,其中 u R = u − u r e s t u_R=u−u_{rest} uR=uurest是通过电阻的电压, I C I_C IC是给电容器C充电。由电容C=q/u(其中q是电荷,u是电压)的定义,可以得到电容电流 I C = d q / d t = C d u d t I_C=dq/dt=C\tfrac{du}{dt} IC=dq/dt=Cdtdu。因此:
将Eq.(1.4)乘以R,并引入时间常数τm=RC。这就产生了标准形式:
在这里插入图片描述
我们称 u u u为膜电位, τ m \tau _m τm为神经元的膜时间常数。
从数学的角度来看,Eq.(1.5)是一个线性微分方程。从电气工程师的角度来看,它是一个漏泄的积分器(leaky integrator)或 RC 电路,其中电阻R和电容C并联。从神经学家的观点来看,式(1.5)称为被动膜方程。Eq.(1.5)的解是什么?假设,无论出于什么原因,在t=0时,膜电势的值为 u r e s t + Δ u u_{rest}+Δu urest+Δu。对于 t > 0 t>0 t>0,输入为 I ( t ) = 0 I(t)=0 I(t)=0。我们直觉地认为,如果我们等待的时间足够长,膜电位就会降低到它的静息值 u r e s t u_{rest} urest。确实,初始条件为 u ( t 0 ) = u r e s t + Δ u u(t0)=u_{rest}+Δu u(t0)=urest+Δu的微分方程的解为:在这里插入图片描述
解(1.6)的有效性可以通过对方程两边求导来验证。因为它是在没有输入的情况下的解,所以它有时被称为“自由”解。
在这里插入图片描述

  在一个简单的例子中研究Eq.(1.5)定义的被动膜的动力学。假设被动膜受到恒定的输入电流 I ( t ) = I 0 I(t)=I_0 I(t)=I0的刺激,该电流从 t = 0 t=0 t=0开始,结束于时间 t = Δ t=Δ t=Δ。为了简便起见,我们假设 t = 0 t=0 t=0时的膜电位处于其静息值,即初始条件: u ( 0 ) = u r e s t u(0)=u_{rest} u(0)=urest
0 < t < Δ 0< t < Δ 0<t<Δ的解:在这里插入图片描述
  如果输入电流不停止,则膜电位(1.7)在 t → ∞ t→∞ t时趋近于u(∞)的渐近值 u ( ∞ ) = u r e s t + R I 0 u(∞)=u_{rest}+RI_0 u()=urest+RI0。可以通过查看图1.6中RC电路的电路图来理解这个结果。一旦达到稳定状态,电容上的电荷就不再改变。所有的输入电流必须通过电阻器。因此,电阻处的稳态电压为 R I 0 RI_0 RI0,因此总膜电压为 u r e s t + R I 0 u_{rest}+RI_0 urest+RI0

欧拉方法解Eq.(1.5)的微分方程
在这里插入图片描述

d u d t = u ( t + 1 ) − u ( t ) \frac{du }{dt} =u(t+1)-u(t) dtdu=u(t+1)u(t)
对于Eq.(1.5)来说:运用欧拉方法解该线性方程:
u ( t ) = ( 1 − 1 τ m ) u ( t − 1 ) + 1 τ m u r e s t + R I ( t ) τ m u(t)=(1-\frac{1}{\tau _m})u(t-1)+\frac{1}{\tau _m}u_{rest}+\tfrac{RI(t)}{\tau _m} u(t)=(1τm1)u(t1)+τm1urest+τmRI(t)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星光里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值