核心!Machine Learning和 Deep Learning的深入解读

先分析下什么是机器学习和深度学习:

机器学习:

通过算法实现人工智能,计算机识别数据模式并根据数据模式采取行动,计算机学习久了准确性也就高了,但不需要明确的编程。机器学习本质是预测编码、聚类和视觉热图等分析方法。比如平时手机软件里的一些自动推荐功能就是机器学习的很好例子

 

深度学习:

深度学习又叫人工神经网路,深度学习模仿人类大脑感知与组织的方式,根据数据输入做出决策。

 

机器学习详解:

机器学习通过算法分析数据,从结果中进行学习,然后将 学习后的算法 用来做决策或进行预测,

例子:聚类、贝叶斯网络、视觉数据映射

 

机器学习又分为 有监督学习无监督学习

有监督学习和无监督学习的差别就是依不依赖人

有监督学习就是依赖人为生成的数据种子集,这些数据种子集调教程序让它如何看待数据。

无监督学习就是计算机自己观察数据中的模式,将他们和其他数据比较或进行搜索查询,  随着数据集的增长、更多模式的浮现,机器学习算法不断自我优化

 

深度学习详解:

深度学习不像数据分类那样根据任务选择算法,而是模仿人类大脑结构与运算过程:

识别非结构化输入的数据,输出精确地行为和决策

 

深度学习可以是有监督的也可以是无监督的,这意味着神经网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值