pytorch 的自适应池化adaptive pooling--nn.AdaptiveAvgPool2d

PyTorch中的AdaptiveAvgPool2d是一种自适应池化层,允许指定输出特征图的大小,通道数保持不变。该层根据输入尺寸自动调整kernel_size和stride,确保输出尺寸符合设定,公式为:kernel_size = (input_size + 2*padding - (output_size - 1)*stride),通常padding设为0,stride设为input_size/output_size的向下取整值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只需要给定输出特征图的大小就好,其中通道数前后不发生变化。具体如下:

自适应池化adaptive pooling 是pytorch含有的一种池化层,在pytorch中有6种形式:

自适应最大池化Adaptive Max Pooling:
torch.nn.AdaptiveMaxPool1d(output_size)
torch.nn.AdaptiveMaxPool2d(output_size)
torch.nn.AdaptiveMaxPool3d(output_size)

自适应平均池化Adaptive Average Pooling:
torch.nn.AdaptiveAvgPool1d(output_size)
torch.nn.AdaptiveAvgPool2d(output_size)
torch.nn.AdaptiveAvgPool3d(output_size)

使用例子

import torch.nn as nn
import torch
# target output size of 5x7
m = nn.AdaptiveMaxPool2d((5,7))
input = torch.randn(1, 64, 8, 9)
output = m(input)
print(output.size()) #torch.Size([1, 64, 5, 7])

# target output size of 7x7 (square)
m = nn.AdaptiveMaxPool2d(7)
input = torch.randn(1, 64, 10, 9)
output 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值