Pytorch中的 AdaptivePooling

24 篇文章 0 订阅
22 篇文章 0 订阅

AdaptivePooling是只出现在Pytoch中的池化方法,官方给出的[运算公式]为:(https://discuss.pytorch.org/t/what-is-adaptiveavgpool2d/26897)
kernel的大小为 (input_size+target_size-1) // target_size, i.e. rounded up(即四舍五入)
中心点的位置为 四舍五入 0~(input_size - stencil_size) 之间的等距点

而我们常用的池化计算公式为:
shape(output) = (shape(value) - ksize + 1) / strides
其中
padding = ‘SAME’: Round down (舍出).
padding = ‘VALID’: Round up (舍入).

所以我希望找出一个可以将AdaptivePooling与一般池化进行转换的公式,为了简化问题,将padding设为0(事实上Pytorch的源码里也是如此)
经过参看资料与自己推导:
stride = floor ( (input_size / (output_size) )

ksize = input_size − (output_size−1) * stride
以这两个为参数的Pooling就等价于AdaptivePooling。
关于公式的正确性验证,各位可以自己初始化几个张量实验一下,本人实验后是正确的。

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值