LapSRN的Loss: Carbonnier Loss

本文探讨了L2范数在图像超分辨率中的局限性,并引入了一种名为Charbonnier Loss的新型损失函数,以解决过度平滑问题并提高抗噪能力。LapSRN利用此损失函数在不同尺度上进行训练,生成多尺度输出图像,提升超分辨率效果。代码实现细节未给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文认为相同的LR补丁可能有多种相应的HR补丁,而L2范数并不能捕捉潜在的综合HR补丁,L2范数重建出的图像往往过平滑。本文提出了一种抗噪性强的损失函数:

让x输入LR形象和θ的设置网络参数进行优化。目标是学习一个映射函数用于生成高分辨率图像ˆy = f(x;θ)贴近grounth truth图像y。x表示LR图像,y表示HR图像,r表示残差,用rs表示s级残差图像,s表示对应的level,也就是scale,用xs表示放大后的LR图像,用ys表示相应的HR图像。在s级的期望输出HR图像由ys = xs + rs建模。该loss函数并非如传统L2 loss函数,N是每个batch中的图片数量,L为金字

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值