本文认为相同的LR补丁可能有多种相应的HR补丁,而L2范数并不能捕捉潜在的综合HR补丁,L2范数重建出的图像往往过平滑。本文提出了一种抗噪性强的损失函数:
让x输入LR形象和θ的设置网络参数进行优化。目标是学习一个映射函数用于生成高分辨率图像ˆy = f(x;θ)贴近grounth truth图像y。x表示LR图像,y表示HR图像,r表示残差,用rs表示s级残差图像,s表示对应的level,也就是scale,用xs表示放大后的LR图像,用ys表示相应的HR图像。在s级的期望输出HR图像由ys = xs + rs建模。该loss函数并非如传统L2 loss函数,N是每个batch中的图片数量,L为金字