ICCV2019-行人重识别-Batch DropBlock Network for Person Re-identification and Beyond论文阅读

动机:

依旧是一篇基于part-based的re-id论文,但与其他相比不同的是,这篇文章没有正面提取local 信息,而是从侧面通过结合随机mask有效信息强化对local特征的学习。

创新:

  • Batch DropBlock,这个思路和Random Erasing如出一辙,只不过Random Erasing在图像层面,而Batch DropBlock在特征层面。既然原理相似,那只要把Random Erasing对于图片层面的说辞换成特征层面就行了。
  • Batch DropBlock, 顾名思义, 就是对一个batch的特征加入DropBlock。DropBlock是Google之前提出的Dropout系列的一个正则化的模块,这个在SONA网络中有用到。
    这样一个batch的所有特征的同一区域都加入了mask对于这几个Drop操作,作者也很贴心画了图,一目了然:
    在这里插入图片描述
  • 作者举了一个例子也很好,如果对一个batch内的样本的特征随机打mask,如果anchor和neg样本头部打了mask,pos样本在脚打了mask,那么在Triplet loss的时候,损失函数将无法将这些local特征一一对应。
    在这里插入图片描述
  • 参数设置, r h = 0.3 , r w = 1.0 r_{h} = 0.3, r_{w} = 1.0 rh=0.3,rw=1.0,即纵向占比0.3,横向占比为1,至于位置则是随机的。

框架:

在这里插入图片描述

  1. 框架结构:单一分支
  2. 特征:使用Global Max Pooling和Global Average Polling后的特征进行学习。其中,Global Max Pooling的特征加入了Batch DropBlock模块,期望可以更好学习到local特征。
  3. 损失函数:CE loss+ BH triplet loss
  4. backbone:resnet50 使用last-stride = 1

实验:

在这里插入图片描述
这个实验对比了cutout和random erasing对于结果的提升,看样子cutout要优于random erasing。
之前我也以为这两个方法是一样的,只不过叫法不同,查资料后原来还是有差别的。

方法cutoutrandom erasing
选择区域大小固定随机
填充像素0(可理解为"裁掉")图像平均值/随机点

在这里插入图片描述
在除了market上的结果都很好。

疑惑:

我的疑问在RE,Cutout的对比试验,如果作者不使用cutout而使用BDB+RE,那不就是可以理解为是Bag of trick的baseline+Batch DropBlock分支。但是加入后market上效果从94.5掉到了94.4,这样看样子效果甚至不如不加。转念一想,那这篇文章的亮点我感觉是cutout而不是DropBlock啊。。。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值