给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
- 思路
- 利用动态规划,设立dp数组n+1 x m+1 维,其每个元素的意义为计算将word1[:i]改为word2[:j]所需要的步骤数
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
#minimal distance between word1[0...i] and word2[0...j]
m = len(word1)
n = len(word2)
dp = [[0 for i in range(n+1)] for i in range(m+1)]
for i in range(1, m+1):
dp[i][0] = i
for j in range(1, n+1):
dp[0][j] = j
for i in range(1, m+1):
for j in range(1, n+1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(
dp[i-1][j] + 1,
dp[i][j-1] + 1,
dp[i-1][j-1] + 1
)
return dp[m][n]