感知机认识

这篇博客介绍了感知机的基本概念,包括权重和偏置的设置,以及它如何表示逻辑电路。文章强调单层感知机只能处理线性问题,而多层感知机则能解决非线性问题。通过实例展示了使用感知机实现与门(AND gate)和与非门(NAND gate)的过程,并用numpy进行实现。此外,还讨论了感知机在逻辑电路表示中的局限性和多层结构的重要性。
摘要由CSDN通过智能技术生成
# 感知机
# 主要形式四号通过接收多个信号然后输出一个信号
# 感知机将权重和偏置设置为参数
# 感知机可以表示逻辑电路
# 异或门无法通过单层感知机实现 可以通过多层实现
# 单层感知机只能表示线性空间,多层感知机可以描述非线性空间
#

# 简单逻辑电路
#   与门(AND gate)
#       有两个输入和一个输出的门电路
#
#   与非门(NAND gate)
#       颠倒了与门的输出
#

# 感知机的实现 与门(and gate)实现
# def AND(x1, x2):
#     w1, w2, theta = 0.5, 0.5, 0.7
#     tmp = x1 * w1 + x2 * w2
#     if tmp <= theta:
#         return 0
#     elif tmp > theta:
#         return 1
#
#
# print(AND(0, 0))
# print(AND(0, 1))

# 导入权重和偏置
# numpy 实现感知机

import numpy as np
# x = np.array([0, 1])
# w = np.array([0.5, 0.5])
# b = -0.7
# print(x * w)
# print(np.sum(x * w))
# print(np.sum(w * x) + b)

# 使用numpy实现与门
def AND(x1, x2):
    x = np.array([x1, x2])
    w = np.array([0.5, 0.5])
    b = -0.7
    tmp = np.sum(w*x) + b
    if tmp <= 0:
        return 0
    else:
        return 1

print(AND(1, 1))
print(AND(0.5, 0.5))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

P("Struggler") ?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值