# 感知机
# 主要形式四号通过接收多个信号然后输出一个信号
# 感知机将权重和偏置设置为参数
# 感知机可以表示逻辑电路
# 异或门无法通过单层感知机实现 可以通过多层实现
# 单层感知机只能表示线性空间,多层感知机可以描述非线性空间
#
# 简单逻辑电路
# 与门(AND gate)
# 有两个输入和一个输出的门电路
#
# 与非门(NAND gate)
# 颠倒了与门的输出
#
# 感知机的实现 与门(and gate)实现
# def AND(x1, x2):
# w1, w2, theta = 0.5, 0.5, 0.7
# tmp = x1 * w1 + x2 * w2
# if tmp <= theta:
# return 0
# elif tmp > theta:
# return 1
#
#
# print(AND(0, 0))
# print(AND(0, 1))
# 导入权重和偏置
# numpy 实现感知机
import numpy as np
# x = np.array([0, 1])
# w = np.array([0.5, 0.5])
# b = -0.7
# print(x * w)
# print(np.sum(x * w))
# print(np.sum(w * x) + b)
# 使用numpy实现与门
def AND(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.7
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
print(AND(1, 1))
print(AND(0.5, 0.5))
感知机认识
最新推荐文章于 2024-11-10 15:01:17 发布
这篇博客介绍了感知机的基本概念,包括权重和偏置的设置,以及它如何表示逻辑电路。文章强调单层感知机只能处理线性问题,而多层感知机则能解决非线性问题。通过实例展示了使用感知机实现与门(AND gate)和与非门(NAND gate)的过程,并用numpy进行实现。此外,还讨论了感知机在逻辑电路表示中的局限性和多层结构的重要性。
摘要由CSDN通过智能技术生成