交叉熵

这篇文写的挺好的,自己只看一遍记不得,所以只是搬运一下https://blog.csdn.net/tsyccnh/article/details/79163834

回顾:

线性回归:损失函数(目标函数)—最小二乘法: 矩阵法,数学方法求解,求导
逻辑回归:模型参数求解方法—极大似然估计:数学求导,梯度下降法

交叉熵

交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距

信息论

交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

1. 信息量

首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设XX是一个离散型随机变量,其取值集合为 χ \chi χ,概率分布函数 p ( x ) = P r ( X = x ) , x ∈ χ p ( x ) = P r ( X = x ) , x ∈ χ , p(x)=Pr(X=x),x∈χp(x)=Pr(X=x),x∈χ, p(x)=Pr(X=x),xχp(x)=Pr(X=x),xχ,则定义事件 X = x 0 X=x_0 X=x0的信息量为:

I ( x 0 ) = − l o g ( p ( x 0 ) ) I(x_0)=−log(p(x_0)) I(x0)=log(p(x0))
I ( x 0 ) = − l o g ( p ( x 0 ) ) I(x_0)=−log(p(x_0)) I(x0)=log(p(x0))

由于是概率所以 p ( x 0 ) p(x_0) p(x0)的取值范围是[0,1]绘制为图形如下:

可见该函数符合我们对信息量的直觉

2. 熵

考虑另一个问题,对于某个事件,有n种可能性,每一种可能性都有一个概率 p ( x i ) p(xi) p(xi)这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

序号事件概率p信息量
A电脑正常开机0.7-log(p(A))=0.36
B电脑无法开机0.2-log(p(B))=1.61
C电脑爆炸了0.1-log(p©)=2.30

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X)=-\sum_{i=1}^n p(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))

其中n代表所有的n种可能性,所以上面的问题结果就是
H ( X ) = − [ p ( A ) l o g ( p ( A ) ) + p ( B ) l o g ( p ( B ) ) + p ( C ) ) l o g ( p ( C ) ) ] H(X)=-[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))] H(X)=[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]
= 0.7 × 0.36 + 0.2 × 1.61 + 0.1 × 2.30 =0.7\times 0.36+0.2\times 1.61+0.1\times 2.30 =0.7×0.36+0.2×1.61+0.1×2.30
= 0.804 =0.804 =0.804

然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:

H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X)=-\sum_{i=1}^n p(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))
= − p ( x ) l o g ( p ( x ) ) − ( 1 − p ( x ) ) l o g ( 1 − p ( x ) ) =-p(x)log(p(x))-(1-p(x))log(1-p(x)) =p(x)log(p(x))(1p(x))log(1p(x))

3. 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异.

即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]。直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。

KL散度的计算公式:

D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) D_{KL}(p||q)=\sum_{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)}) DKL(pq)=i=1np(xi)log(q(xi)p(xi))

n为事件的所有可能性。 D K L D_{KL} DKL的值越小,表示q分布和p分布越接近.

4. 交叉熵

第3节中的式子改写,

D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) D_{KL}(p||q)=\sum_{i=1}^np(x_i)log(p(x_i))-\sum_{i=1}^np(x_i)log(q(x_i)) DKL(pq)=i=1np(xi)log(p(xi))i=1np(xi)log(q(xi))

= − H ( p ( x ) ) + [ − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) ] =-H(p(x))+[-\sum_{i=1}^np(x_i)log(q(x_i))] =H(p(x))+[i=1np(xi)log(q(xi))]

等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:

H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=-\sum_{i=1}^np(x_i)log(q(x_i)) H(p,q)=i=1np(xi)log(q(xi))

在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即 D K L ( y ∣ ∣ y ^ ) D_{KL}(y||\hat{y}) DKL(yy^),由于KL散度中的前一部分 − H ( y ) −H(y) H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值