ENVI(三)——影像选择控制点配准

1.print screen截图

粘贴到画图中打开,将图像裁剪下来

 

2.将截图和遥感影像加载到ENVI

 

 

3.工具箱Geometry Correction->registration->Image Registration Workflow

 

Base Image File 选择基准遥感影像  Warp Image File 选择截图

4.控制点选择

允许误差填1.5, 默认为5 。

 

 

然后选择同名点,然后点加号

 

选择多个点,点击next

 

ENVI会自动选择几十个点,然后可以看每一个点的误差,可以删除误差较大的点。

分别输出配准之后的截图,下面的是保存的同名点。

截图配准完毕。

### ENVI Classic 中不同分辨率影像方法 在ENVI Classic中执行不同分辨率影像时,主要流程涉及选择合适的基底影像(base image)以及待变形(warping)的目标影像。具体操作是在`Map→Registration`菜单下选取`Select GCPs:image to image`选项来启动图像图像之间的地理控制点(GCP, Ground Control Points)选择过程[^3]。 对于具有已知投影信息的较高空间分辨率影像(VNIR),可以将其设为base影像;而缺乏精确地理位置信息的较低分辨率影像(SWIR)则被指定为目标warp影像。在此过程中,需仔细挑选并标记至少个分布均匀且易于识别的一致特征点于两幅图片上作为GCP点,以此确保后续的空间转换精度达到最佳状态。 完成GCP点位设定之后,应进一步评估这些对应关系所带来的整体偏差水平是否处于可接受范围内。一旦确认无误,则可通过访问`Options→Warp File`命令来进行最终的几何矫正处理,并针对即将实施变换的对象——即SWIR影像置必要的参数选项,比如采用何种类型的重采样算法等细节事项。此外,还需指明保存经过调整后的新版本文件的具体位置及其命名方式。 ```python # Python伪代码展示如何自动化上述部分步骤(仅作示意用途) def select_gcp_points(vnir_image_path, swir_image_path): """ 自动化选择GCP点函数 参数: vnir_image_path (str): VNIR影像路径 swir_image_path (str): SWIR影像路径 返回: list of tuples: 各组GCP坐标对列表 [(vnir_x,vnir_y),(swir_x,swir_y)] """ def warp_swir(swir_image_path, output_path, gcps, resampling_method='nearest'): """ 对SWIR影像应用扭曲校正 参数: swir_image_path (str): 原始SWIR影像路径 output_path (str): 输出路径 gcps (list of tuples): GCP坐标对集合 resampling_method (str): 重采样方法,默认'nearest' 返回: str: 已校正SWIR影像路径 """ ``` 为了验证效果的好坏,通常会对比原始与处理后的图像间是否存在明显的错位现象,尤其是在边缘轮廓处更为明显的位置。如果发现某些局部区域仍存在较大差异,则可能需要返回重新审视所选GCP的质量或是尝试其他更优策略直至满意为止[^4]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值