给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
解题思路:还是采用递归的方法,分别在当前节点的左右子树上寻找,是否存在p和q,直到找到叶子节点。若存在p or q或者节点为null,就返回该节点,最后判断如果左节点不存在p或q,则返回右节点,若左节点存在 p或者q,同时右节点也存在,就返回根节点,否则就返回左节点。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null || root == p || root == q){
return root;
}
root.left = lowestCommonAncestor(root.left,p,q);
root.right = lowestCommonAncestor(root.right,p,q);
return root.left == null ? root.right : root.right == null ? root.left : root;
}
}