剑指offer -- 矩形覆盖

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

比如n=3时,2*3的矩形块有3种覆盖方法:

解题思路:类似于青蛙跳台阶的题,不管对于几个小长方形,最终形成的图形一定只有两种请况,一种是竖着一个长方形加n-1个长方形,一种是横着两个长方形加n-2个长方形,因此f(n) = f(n-1)+f(n-2)。

public class Solution {
    public int RectCover(int target) {
        if(target < 1){
            return 0;
        }
        if(target==1 || target==2){
            return target;
        }
        int a = 1;
        int b = 2;
        int c = 0;
        for(int i = 3;i<=target;i++){
            c = a+b;
            a = b;
            b = c;
        }
        return c;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值