Relu神经网络输出预测全为0或1,对所有输入样本的预测概率也相同

本文分析了一个使用ReLU激活函数的网络在训练中出现的问题,即对所有输入样本输出相同的预测概率。问题根源在于某卷积层训练后的权值W和偏置b均为负数,导致输入样本经卷积运算后的结果全为负值,通过ReLU激活函数后输出全为0。文章提出了更换网络参数初始化方法或调整初始化参数作为解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现有一个使用Relu激活函数的网络,训练过程中发现,它对所有的输入样本都输出一样的预测概率,比如二分类,对所有样本的预测概率都是[0.4,0.6]。由于预测概率都一样,因此预测标签也都一样,全预测为0或1。

一开始以为是不是网络结构搭建有问题,因为当网络参数确定后,不同的输入样本的输入数据不一样,那么输出的预测概率肯定不一样,怎么会全输出一样的概率。然后一层一层找原因,发现某一卷积层的输出值全为0。经过分析,该层使用的是Relu激活函数,而且该层训练后的权值W和偏置b都是负数,这样,输入在这一层的卷积运算结果全为负值,再经过Relu激活函数后,这一层的输出值就全为0。因此,不管输入样本是什么,经过该层后的输出都为0,从而导致网络最终输出的预测概率和输入样本完全没有关系,此时输出概率取决于这一层后面层的偏置参数b。

解决方法:

换一种网络参数的初始化方法,或者改变初始化方法中的参数(比如使用正态初始化的话可以尝试改变方差)

网络参数的初始化方法:

https://blog.csdn.net/weixin_38314865/article/details/106049511

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值