tf.nn.sparse_softmax_cross_entropy_with_logits与tf.nn.softmax_cross_entropy_with_logits

tf.nn.sparse_softmax_cross_entropy_with_logits与 tf.nn.softmax_cross_entropy_with_logits的区别

(1)tf.nn.sparse_softmax_cross_entropy_with_logits

tf.nn.sparse_softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    name=None
)

labels:为样本的真实标签, shape为[batch_size],每一个值∈[0,num_classes),其实就是代表了batch中对应样本的类别,如二分类的label[0,0,1,0…]

logits:为神经网络输出层的输出,shape为[batch_size,num_classes]
具体举例:

import tensorflow as tf
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=tf.argmax(labels, 1))#此处的label经过ont-hot处理
cost = tf.reduce_mean(cross_entropy)

(2)tf.nn.softmax_cross_entropy_with_logits

tf.nn.softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)

labels:为one-hot处理后的真实标签, shape为[batch_size, num_classes],如多分类的label[0,2,1,0…]处理后的标签为[[1,0,0],[0,0,1],[0,1,0],[1,0,0]…];除了one-hot表示,labels的每一行也可以是一个概率分布,每个数值表示属于每个类别的概率。

logits:为神经网络输出层的输出,shape为[batch_size,num_classes]
具体举例:

import tensorflow as tf
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)#此处的label经过ont-hot处理
cost = tf.reduce_mean(cross_entropy)

两个函数的作用是一样的,只是一个处理的是真实标签,一个处理的是one-hot标签。如果使用不当,容易引起如下错误:

Rank mismatch: Rank of labels (received 2) should equal rank of logits minus 1 (received 2)

参考博客:
https://blog.csdn.net/u013250410/article/details/84573682?utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control&dist_request_id=1331647.11349.16183930729342953&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control

https://blog.csdn.net/Jiaach/article/details/78874704

https://stackoverflow.com/questions/40350849/rank-mismatch-rank-of-labels-received-2-should-equal-rank-of-logits-minus-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值