POJ 1523 SPF(割点,分块,tarjan)

题目链接:http://poj.org/problem?id=1523

题目大意:问你图中有哪些割点,并且这些割点能将图分成几块

思路:因为是无向图且没有重边,tarjan判断下是否为割点就可以了,如果

是根节点,且根节点有多于一棵子树,则根节点是割点,若不是根节点且

存在u的孩子使得dfn[u]<=low[v],则u是割点,根节点是割点分割成的部分

是子树的个数,其他是孩子个数加上父亲的个数,也就是孩子数+1

上代码:


#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdio>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
#define mod 1e9+7
#define ll long long
#define maxn 1000+10
vector<int>G[maxn];
bool visit[maxn];
int dfn[maxn], low[maxn], child[maxn];
int index, son;
void tarjan(int u)//连通只做一次不用循环
{
	dfn[u] = low[u] = ++index;
	visit[u] = true;
	for (int i = 0; i < G[u].size(); i++)
	{
		int v = G[u][i];
		if (!visit[v])
		{
			tarjan(v);
			low[u] = min(low[u], low[v]);
			if (dfn[u] <= low[v])
			{
				if (u != 1)//非根节点,根节点可以选取任意一个
					child[u]++;
				else
					son++;
			}
		}
		else//存在返回父节点的,不返回父节点的做法也可以
			low[u] = min(low[u], dfn[v]);
	}
}
void solve()
{
	memset(visit, false, sizeof(visit));
	memset(child, 0, sizeof(child));
	index = 0;
	son = 0;
	tarjan(1);//因为是连通的,所以只做一次tarjan
}
int main()
{
	//freopen("Text.txt", "r", stdin);
	int a, b;
	int k = 1;
	while (1)
	{
		while (scanf("%d", &a) && a)//无重边的
		{
			scanf("%d", &b);
			G[a].push_back(b);
			G[b].push_back(a);
		}
		if (k > 1)
			printf("\n");
		solve();
		printf("Network #%d\n", k++);
		bool flag = true;
		child[1] = son - 1;
		for (int i = 1; i < maxn; i++)
		{
			if (child[i] > 0)
			{
				flag = false;
				printf("  SPF node %d leaves %d subnets\n", i, child[i] + 1);
			}
		}
		if (flag)
			printf("  No SPF nodes\n");
		for (int i = 1; i <= 1000; i++)
			G[i].clear();
		scanf("%d", &a);
		if (!a)
			break;
		scanf("%d", &b);
		G[a].push_back(b);
		G[b].push_back(a);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值