【论文笔记 (7)】Memorizing Normality to Detect Anomaly: Memory-augmented DeepAutoencoder for Unsupervised

本文提出了一种名为记忆增强自编码器(MemAE)的新型模型,用于无监督异常检测。传统的深度自编码器在异常检测中可能存在不足,MemAE通过引入记忆模块来弥补这一缺陷。在训练阶段,MemAE的记忆模块学习并存储正常数据的典型模式,而在测试时,通过记忆模块进行重构,使得正常样本的重构误差较低,异常样本的误差较高,从而有效识别异常。实验结果表明,MemAE在图像、视频和网络安全数据等多个领域的异常检测任务上展现出良好的泛化能力和有效性。
摘要由CSDN通过智能技术生成

Abstract

深度自动编码器已广泛应用于异常检测。在对正常数据进行训练后,自编码器对异常输入产生比正常输入更高的重构误差,并以此作为识别异常的标准。为了减轻基于自编码器的异常检测器的这个缺点,我们建议使用记忆模块模块来增强自编码器,并开发一种改进的自编码器,称为记忆增强自编码器,即MemAE。给定一个输入,MemAE首先从编码器获取编码,然后使用它作为查询检索最相关的记忆项进行重构。在训练阶段,记忆内容被更新,并被鼓励表示正常数据的原型元素。在测试阶段,学习到的记忆将是固定的,从少数几个正常数据中的记忆进行重构。重建将因此接近一个正常的样本。从而加强了异常重建误差的检测。MemAE没有对数据类型的假设,因此适用于不同的任务。在不同数据集上的实验表明,该方法具有良好的泛化性能和较高的有效性。

Introduction

异常检测是一项重要的任务,在各个领域都有关键的应用,例如视频监控[26]。无监督异常检测[47,43,48,32,7]是在给定正常数据样本的情况下学习正常轮廓,然后将不符合正常轮廓的样本识别为异常,由于缺乏人的监督,这是一项具有挑战性的任务。值得注意的是,当数据点位于高维空间(即视频)中时,问题变得更加困难,因为对高维数据建模是出了名的具有挑战性[47]。

深度自动编码器(AE)[2,18]是在无监督环境下对高维数据建模的有力工具。它由用于从输入获得压缩编码的编码器和用于从编码重建数据的解码器组成。编码本质上是一个信息瓶颈,它迫使网络提取高维数据的典型模式。在异常检测中,AE通常通过最小化正常数据上的重构误差来训练,然后使用重构误差作为异常的指示器。通常假设[48,11,45]正常输入的重建误差较低,因为它们接近训练数据,而非正常输入的重建误差变高。

然而,这个假设并不总是成立的,有时声发射可以很好地“概括”,它也可以很好地重建异常输入。现有文献[48,图1]和本文(参见图4和图6)中都有这一观察结果。由于没有异常的训练样本,并且异常输入的重建行为应该是不可预测的,因此异常引起更高重建误差的假设可能在某种程度上是有问题的。如果某些异常与正常训练数据具有共同的组成模式,或者解码器“太强”而不能很好地解码某些异常编码,则AE很有可能很好地重构这些异常。

在这里插入图片描述图一:通过提出的MemAE进行异常检测。对只有正常样本的数据集进行训练后,MemAE中的内存记录了原型的正常模式。给定一个异常输入,MemAE会检索记忆中最相关的正常模式进行重构,从而产生与异常输入显著不同的输出。为了简化可视化,我们假设这里只处理了一个内存项。

为了减轻AEs的缺点,我们建议使用记忆模块来增强深度自动编码器,并引入一种新的模型:记忆增强自动编码器,即MemAE。给定一个输入,MemAE并不直接将其编码输入解码器,而是将其作为查询来检索内存中最相关的项。然后将这些项聚合并交付给解码器。具体来说,上述过程是通过使用基于注意的记忆寻址来实现的。我们进一步建议使用可微的硬收缩算子来诱导记忆寻址权值的稀疏性,这隐含地鼓励记忆项在特征空间中接近查询项。

在MemAE的训练阶段,我们与编码器和解码器一起更新记忆内容。由于稀疏寻址策略,MemAE模型被鼓励优化和高效地使用有限数量的存储器槽,使存储器记录正常训练数据中的典型正常模式,以获得较低的平均重建误差(见图3)。在测试阶段,学习到的记忆内容是固定的,通过选择少量的正常记忆项作为输入编码的邻域进行重构。因为重建是在内存中获得正常模式,所以它趋向于接近正常数据。因此,如果输入与正常数据不相似,即异常,则重建误差倾向于突出显示。示意图如图1所示。所提出的MemAE没有对数据类型的假设,因此可以普遍应用于解决不同的任务。我们将提出的MemAE应用于不同应用领域的各种公共异常检测数据集。大量实验证明了MemAE算法具有良好的泛化能力和高效性。

Related Work

异常检测:

在无监督异常检测中,只有正常样本可用作训练数据[4]。因此,处理这个问题的一个自然选择是单类分类方法,如单类SVM[5,34]和深度单类网络[31,3],它们试图学习正常样本周围的一个判别超平面。无监督聚类方法,如k-均值方法和高斯混合模型(GMM)[47,40],也被用来建立正常数据的详细轮廓以识别异常。这些方法在处理高维数据时通常性能不佳。

基于重构的方法是基于这样的假设提出的,即仅基于正常数据学习的模型不能准确地表示和重构异常[48]。已经使用不同的技术,例如PCA方法[14,15]和稀疏表示[25,45]来学习正常模式的表示。具体地,稀疏表示方法[25,45]联合学习字典和正常数据的稀疏表示,用于检测异常。受限的特征表示限制了性能。最近的一些工作[43,46,48,6]训练深度自动编码器进行异常检测。例如,基于结构能量的深度神经网络[43]被用来对训练样本建模。Zong et al.。[48]提出了对深度自动编码器的编码特征和重建误差进行联合建模的方法。虽然基于重构的方法取得了丰硕的成果,但其性能受到潜在空间表示设计不足的制约。

针对视频异常检测的关键应用场景,专门设计了一系列视频异常检测方法[24,44,11,21]。Kim和Grauman[15]使用概率主成分分析(MPPCA)的混合模型来模拟光流特征。Mahadevan等人。[27]通过混合动态纹理(MDT)为视频建模。卢等人。[25]提出了一种高效的多字典稀疏编码方法。赵等人。[44]以在线方式更新词典。提出了基于深度学习的方法[11,26,24,32]来同时利用空间和时间域的信息。Hasan et al.。[11]根据卷积声发射的重建误差检测异常。赵等人。[45]提出了基于三维卷积的重建和预测方法。Luo等人。[26]通过堆叠的RNN迭代更新稀疏系数,以检测视频中的异常。刘等人。[24]通过结合不同的技术(包括梯度损失、光流和对抗性训练)来训练帧预测网络。然而,这些方法缺乏一种可靠的机制来激励模型在异常情况下产生较大的重建误差。

记忆网络

记忆增强型网络在解决不同问题方面吸引了越来越多的兴趣[10,39,33]。Graves等人。[10]使用外部存储器来扩展神经网络的能力,在神经网络中,基于内容的注意力用于寻址存储器。考虑到存储器可以稳定地记录信息,Santoro等人提出了一种新的方法。[33]使用记忆网络处理一次性学习问题。外部存储器还被用于多模式数据生成[16,22],以绕过模式折叠问题并保存详细的数据结构。

记忆增强自编码器

<

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值