机器学习4. 交叉熵损失函数与softmax回归的反向传播推导

在多分类问题中,一般选取softmax作为分类器,交叉熵作为损失函数。他们的形式都很简单,但是在BP的时候还是有些复杂,现在总结如下:

交叉熵损失函数

(1) C ( a , y ) = − ∑ i y i l n a i C(a,y)=-\sum_i{y_i ln a_i} \tag{1} C(a,y)=iyilnai(1)

softmax逻辑回归

i i i个输出值 a i a_i ai为:
(2) a i = e z i ∑ k e z k a_i=\frac{e^{z_i}}{\sum_ke^{z_k}} \tag{2} ai=kezkezi(2)

结论

(3) ∂ C ∂ z i = a i − y i \frac{∂C}{∂z_i} = a_i−y_i \tag{3} ziC=aiyi(3) 【预测值减真实值】

推导过程

(4) ∂ C ∂ z i = ∑ j ( ∂ C j ∂ a j ∂ a j ∂ z i ) \frac{∂C}{∂z_i} =\sum_j(\frac{∂C_j}{∂a_j} \frac{∂a_j}{∂z_i} ) \tag{4} ziC=j(ajCjziaj)(4)
【因为 z i z_i zi总会出现在分母中,所以会对所有的 a j a_j aj产生影响,每个 a j a_j aj都会有一个损失值 C j C_j Cj(1式)】

  • 先看第一项,由(1)式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值