一、数据集
表面缺陷数据集合来自博客:https://blog.csdn.net/qq_27871973/article/details/84974231
数据集来源:https://hci.iwr.uni-heidelberg.de/node/3616
数据集:class3;
二、训练样本
数据集图片数量:1150张图片
图片大小:512*512
颜色:灰度图
训练样本(有缺陷图片)数量:66张图片
测试样本(有缺陷图片)数量:85张图片
注:由于缺陷样本少,采用旋转、平移等方式改变缺陷位置方向,增加训练样本数量
制作样本方法采用labelme进行标注,标注过程参考上一篇博客:https://blog.csdn.net/weixin_38341864/article/details/88819668
三、测试结果
四、总结
对于某些肉眼很难分辨的缺陷图片,mask-rcnn算法也能很好区分,对于第三幅图片识别出的两个缺陷分别给出准确度,真实缺陷部分准确度为0.990,类似缺陷部分准确度为0.731,可以通过准确度的阈值筛选真实缺陷部分。