【连续介质力学】涉及积分的定理

涉及积分的定理

分部积分

分部积分:
∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b v ( x ) u ′ ( x ) d x \int_a^bu(x)v'(x)dx=u(x)v(x)|_a^b-\int_a^bv(x)u'(x)dx abu(x)v(x)dx=u(x)v(x)ababv(x)u(x)dx

其中, v ′ ( x ) = d v d x v'(x) = \frac{dv}{dx} v(x)=dxdv

散度定理

给定一个体积为V的域B,边界为S,那么应用在向量场的散度定理(也叫Green’s Theorem, 格林定理)为:
∫ V ∇ x ⃗ ⋅ v ⃗ d V = ∫ S v ⃗ ⋅ n ^ d S = ∫ S v ⃗ ⋅ d S ⃗ ∫ V v i , i d V = ∫ S v i n ^ i d S = ∫ S v i d S i \int_V \nabla_{\vec x}\cdot \vec vd V = \int_S \vec v\cdot \hat ndS = \int _S \vec v\cdot d\vec S \\ \int_V v_{i,i}dV=\int_Sv_i\hat n_idS=\int_Sv_idS_i Vx v dV=Sv n^dS=Sv dS Vvi,idV=Svin^idS=SvidSi
其中, n ^ \hat n n^ 是向外垂直于表面S的
在这里插入图片描述
令T是在域B的二阶张量场,那么应用散度定理在这个场:
∫ V ∇ x ⃗ ⋅ T d V = ∫ S T ⋅ n ^ d S = ∫ S T ⋅ d S ⃗ ∫ V T i j , j d V = ∫ S T i j n ^ j d S = ∫ S T i j d S j \int_V \nabla_{\vec x}\cdot Td V = \int_S T\cdot \hat ndS = \int _S T\cdot d\vec S \\ \int_V T_{ij,j}dV=\int_ST_{ij}\hat n_jdS=\int_ST_{ij}dS_j Vx TdV=STn^dS=STdS VTij,jdV=STijn^jdS=STijdSj

通过利用散度定理,也可以证明:
在这里插入图片描述
其中,假设 δ i k , j = 0 i k j \delta_{ik,j}=0_{ikj} δik,j=0ikj,另外,因为 x k , j = δ k j x_{k,j}=\delta_{kj} xk,j=δkj,得到:
在这里插入图片描述
给定一个定义在域B的二阶张量,以下成立:
在这里插入图片描述
因此,可以证明:
在这里插入图片描述

问题1.47 令 Ω \Omega Ω 是一个边界为 Γ \Gamma Γ的域,m是一个二阶张量场, ω \omega ω是一个标量场,证明:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

路径的独立性

连接两个点A和B的曲线称为从A到B的路径
在这里插入图片描述
建立线积分与路径无关的条件:
b ⃗ ( x ⃗ ) \vec b(\vec x) b (x )是一个连续的向量场,那么积分 ∫ C b ⃗ ⋅ d r ⃗ \int_{C}\vec b\cdot d\vec r Cb dr 与路径无关,当且仅当 b ⃗ \vec b b 是保守场,这意味着存在一个标量场 ϕ \phi ϕ使得 b ⃗ = ∇ x ⃗ ϕ \vec b = \nabla_{\vec x} \phi b =x ϕ,也就是向量场是某个标量场的梯度:
∫ A B b ⃗ ⋅ d r ⃗ = ∫ A B ∇ x ⃗ ϕ ⋅ d r ⃗ ∫ A B ( b 1 e ^ 1 + b 2 e ^ 2 + b 3 e ^ 3 ) ⋅ d r ⃗ = ∫ A B ( ∂ ϕ ∂ x 1 e ^ 1 + ∂ ϕ ∂ x 2 e ^ 2 + ∂ ϕ ∂ x 3 e ^ 3 ) ⋅ d r ⃗ \int_A^B\vec b\cdot d\vec r=\int_A^B\nabla_{\vec x}\phi \cdot d\vec r \\ \int_A^B(b_1\hat e_1+b_2\hat e_2+b_3\hat e_3)\cdot d\vec r=\int_A^B(\frac{\partial \phi}{\partial x_1}\hat e_1+\frac{\partial \phi}{\partial x_2}\hat e_2+\frac{\partial \phi}{\partial x_3}\hat e_3)\cdot d\vec r ABb dr =ABx ϕdr AB(b1e^1+b2e^2+b3e^3)dr =AB(x1ϕe^1+x2ϕe^2+x3ϕe^3)dr

因此:
b 1 = ∂ ϕ ∂ x 1 ; b 2 = ∂ ϕ ∂ x 2 ; b 3 = ∂ ϕ ∂ x 3 ; b_1 = \frac{\partial \phi}{\partial x_1}; \quad b_2 = \frac{\partial \phi}{\partial x_2}; \quad b_3 = \frac{\partial \phi}{\partial x_3}; b1=x1ϕ;b2=x2ϕ;b3=x3ϕ;

由于场是保守的,所以 b ⃗ \vec b b 的旋度为0:
在这里插入图片描述
因此,得出结论:
在这里插入图片描述

因此,如果以上条件不满足,则场不是保守的

Kelvin-Stokes定理

令S是一个曲面, F ⃗ ( x ⃗ , t ) \vec F(\vec x, t) F (x ,t)是一个向量场,根据Kelvin-Stokes定理,有:
∮ Γ F ⃗ ⋅ d Γ ⃗ = ∫ Ω ( ∇ ⃗ x ⃗ ∧ F ⃗ ) ⋅ d S ⃗ = ∫ Ω ( ∇ ⃗ x ⃗ ∧ F ⃗ ) ⋅ n ^ d S \boxed{\oint_{\Gamma}\vec F \cdot d\vec \Gamma=\int_{\Omega}(\vec \nabla_{\vec x}\wedge \vec F)\cdot d\vec S=\int_{\Omega}(\vec \nabla_{\vec x}\wedge \vec F)\cdot \hat n dS} ΓF dΓ =Ω( x F )dS =Ω( x F )n^dS

在这里插入图片描述

如果 p ^ \hat p p^表示切向于边界 Γ \Gamma Γ的单位向量,那么Stoke’s定理为:
∮ Γ F ⃗ ⋅ p ^ d Γ = ∫ Ω ( ∇ ⃗ x ⃗ ∧ F ⃗ ) ⋅ d S ⃗ = ∫ Ω ( ∇ ⃗ x ⃗ ∧ F ⃗ ) ⋅ n ^ d S \oint_{\Gamma}\vec F\cdot \hat pd \Gamma=\int_{\Omega}(\vec \nabla_{\vec x}\wedge \vec F)\cdot d\vec S=\int_{\Omega}(\vec \nabla_{\vec x}\wedge \vec F)\cdot \hat ndS ΓF p^dΓ=Ω( x F )dS =Ω( x F )n^dS

参考笛卡尔坐标系下的表示:
F ⃗ = F 1 e ^ 1 + F 2 e ^ 2 + F 3 e ^ 3 \vec F= F_1 \hat e_1+ F_2 \hat e_2+ F_3 \hat e_3 F =F1e^1+F2e^2+F3e^3
d S ⃗ = d S 1 e ^ 1 + d S 2 e ^ 2 + d S 3 e ^ 3 d\vec S = dS_1\hat e_1+dS_2\hat e_2+dS_3\hat e_3 dS =dS1e^1+dS2e^2+dS3e^3
d Γ ⃗ = d x 1 e ^ 1 + d x 2 e ^ 2 + d x 3 e ^ 3 d\vec \Gamma = dx_1\hat e_1+dx_2\hat e_2+dx_3\hat e_3 dΓ =dx1e^1+dx2e^2+dx3e^3

F ⃗ \vec F F 的旋度的分量为:
在这里插入图片描述
那么,Stoke‘s定理表示成以上分量形式:
∮ Γ F 1 d x 1 + F 2 d x 2 + F 3 d x 3 = ∫ Ω ( ∂ F 3 ∂ x 2 − ∂ F 2 ∂ x 3 ) d S 1 + ( ∂ F 1 ∂ x 3 − ∂ F 3 ∂ x 1 ) d S 2 + ( ∂ F 2 ∂ x 1 − ∂ F 1 ∂ x 2 ) d S 3 \oint_{\Gamma}F_1dx_1+F_2dx_2+F_3dx_3 \\ =\int_{\Omega}(\frac{\partial F_3}{\partial x_2}-\frac{\partial F_2}{\partial x_3})dS_1+(\frac{\partial F_1}{\partial x_3}-\frac{\partial F_3}{\partial x_1})dS_2+(\frac{\partial F_2}{\partial x_1}-\frac{\partial F_1}{\partial x_2})dS_3 ΓF1dx1+F2dx2+F3dx3=Ω(x2F3x3F2)dS1+(x3F1x1F3)dS2+(x1F2x2F1)dS3

特殊情况:曲面S是就是平面 Ω \Omega Ω,上式仍然成立
在这里插入图片描述
如果 Ω \Omega Ω x 1 − x 2 x_1-x_2 x1x2平面,那么上式变为:
∮ Γ F ⃗ ⋅ d Γ = ∫ Ω ( ∇ ⃗ x ⃗ ∧ F ⃗ ) ⋅ e ^ 3 d S \oint_{\Gamma}\vec F \cdot d \Gamma=\int_{\Omega}(\vec \nabla_{\vec x}\wedge \vec F)\cdot \hat e_3 dS ΓF dΓ=Ω( x F )e^3dS

这就是大家都知道的平面上的Stoke’s定理,即格林公式
张量分量:
∮ Γ F 1 d x 1 + F 2 d x 2 = ∫ Ω ( ∂ F 2 ∂ x 1 − ∂ F 1 ∂ x 2 ) d S 3 \oint_{\Gamma}F_1dx_1+F_2dx_2=\int_{\Omega}(\frac{\partial F_2}{\partial x_1}-\frac{\partial F_1}{\partial x_2}) dS_3 ΓF1dx1+F2dx2=Ω(x1F2x2F1)dS3

在这里插入图片描述

格林公式

F ⃗ \vec F F 是一个向量场,应用散度定理,有:
∫ V ∇ x ⃗ ⋅ F ⃗ = ∫ S F ⃗ ⋅ n ^ d S \int_V \nabla_{\vec x}\cdot \vec F=\int_S \vec F \cdot \hat n dS Vx F =SF n^dS

根据:
在这里插入图片描述
F ⃗ = ϕ ∇ x ⃗ ψ \vec F = \phi \nabla_{\vec x}\psi F =ϕx ψ,代入上面两个等式:
在这里插入图片描述
这就是格林第一公式

且有:
在这里插入图片描述
这就是格林第二公式

问题1.48 令 b ⃗ \vec b b 是一个向量场,定义为 b ⃗ = ∇ ⃗ x ⃗ ∧ v ⃗ \vec b =\vec \nabla_{\vec x}\wedge \vec v b = x v ,证明:

在这里插入图片描述
参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
连续介质力学讲义pdf是一本讲述连续介质力学理论和应用的电子书。连续介质力学是研究固体和流体等连续性物质力学性质的学科。这本讲义通过对连续介质的运动、力学和热力学性质进行全面的扩展和深入探讨,为读者提供了深入理解连续介质力学基本原理和相关应用的重要资源。 这本讲义首先介绍了连续介质力学的基本概念和基本假设,包括描述连续介质的宏观和微观性质的数学形式。然后,它详细讨论了连续介质的运动方程和应力张量的定义,介绍了力学平衡和不变性原理的应用。此外,还包含了流体连续介质力学的特殊情况,如不可压缩流体和可压缩流体的处理方法和基本方程。 讲义还介绍了弹性和塑性力学,探讨了弹性介质的应力-应变关系以及材料的本构关系。此外,它还包含了流变学的基本原理和流变体的力学性质。最后,该讲义还涵盖了热力学连续介质力学的耦合问题,讨论了热传导、对流和辐射传热等方面的基本原理。 总的来说,连续介质力学讲义pdf是一本全面而详尽的学习材料,涵盖了连续介质力学理论与应用的各个方面。它适用于从事力学研究和工程实践的学生、教师和工程师。无论是理论研究还是应用开发,这本讲义都能为读者提供所需的基础知识和工具,帮助他们更好地理解和应用连续介质力学
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值