【连续介质力学】变形梯度

变形梯度

简介

本节讨论两个不同质点P和Q的之间的相对运动变化

拉伸比和相对伸长

d X ⃗ d\vec X dX : 在参考构形连接质点P和Q的向量,线单元

M ^ \hat M M^: d X ⃗ d\vec X dX 方向的单位向量

d x ⃗ d\vec x dx : 在当前构形连接质点P’和Q‘的向量,线单元

m ^ \hat m m^: d x ⃗ d\vec x dx 方向的单位向量

d S dS dS: d X ⃗ d\vec X dX 的大小, d S = ∣ ∣ d X ⃗ ∣ ∣ = ∣ ∣ P Q ⃗ ∣ ∣ dS = ||d \vec X||=||\vec {PQ}|| dS=∣∣dX ∣∣=∣∣PQ ∣∣

d s ds ds: d x ⃗ d\vec x dx 的大小, d s = ∣ ∣ d x ⃗ ∣ ∣ = ∣ ∣ P ′ Q ′ ⃗ ∣ ∣ ds = ||d \vec x||=||\vec {P'Q'}|| ds=∣∣dx ∣∣=∣∣PQ ∣∣

在这里插入图片描述

  • 拉伸比 λ m ^ \lambda_{\hat m} λm^ , 沿着 m ^ \hat m m^方向:

在这里插入图片描述
范围: 0 < λ m ^ < ∞ 0 < \lambda_{\hat m} < \infty 0<λm^< , 当 d s → 0 , λ m ^ → 0 当 ds \to 0, \lambda_{\hat m}\to 0 ds0,λm^0
当 d s → 0 , λ m ^ → 0 当 ds \to 0, \lambda_{\hat m}\to 0 ds0,λm^0
当 d s → ∞ , λ m ^ → ∞ 当 ds \to \infty, \lambda_{\hat m}\to \infty ds,λm^

不可穿透原理: d s ≠ 0    ⟹    λ m ^ ≠ 0 ds \neq 0 \implies \lambda_{\hat m} \neq 0 ds=0λm^=0
如果不是的话,那么将会同时有两个质点占据着相同的位置

λ m ^ = 1 \lambda_{\hat m}=1 λm^=1: 没有伸长
0 < λ m ^ < 1 0<\lambda_{\hat m}<1 0<λm^<1: P Q ⃗ \vec {PQ} PQ 缩短
λ m ^ > 1 \lambda_{\hat m} > 1 λm^>1: 两个质点之间距离变大

  • 相对伸长 ϵ m ^ \epsilon_{\hat m} ϵm^
    在这里插入图片描述

范围: − 1 < ϵ m ^ < ∞ -1 < \epsilon_{\hat m} < \infty 1<ϵm^<

在这里插入图片描述

物质和空间的变形梯度

运动的质点描述: x ⃗ = x ⃗ ( X ⃗ , t ) \vec x = \vec x(\vec X, t) x =x (X ,t)

根据下图,有:
在这里插入图片描述

在这里插入图片描述
如果将 x ⃗ Q ( X ⃗ Q , t ) \vec x^Q(\vec X^Q, t) x Q(X Q,t)表示成:
在这里插入图片描述
那么,当前构形的向量场 d x ⃗ d \vec x dx 表示为:

在这里插入图片描述
应用泰勒展开:

在这里插入图片描述
由于P和Q离得足够近,所以高阶项可以去掉:
d x ⃗ = ∂ x i ∂ X k d X k e ^ i = F i k d X k e ^ i d\vec x=\frac{\partial x_i}{\partial X_k}dX_k\hat e_i=F_{ik}dX_k\hat e_i dx =XkxidXke^i=FikdXke^i

or:
d x ⃗ = F ⋅ d X ⃗ \boxed{d\vec x=F\cdot d\vec X} dx =FdX

其中 F F F 是二阶张量,被称为物质变形梯度

是从 d X ⃗ d\vec X dX (未变形构形)到 d x ⃗ d\vec x dx (变形构形)的一个线性变换

也可以从梯度的定义出发得到:
标量场: ϕ = ϕ ( x ⃗ , t ) \phi = \phi(\vec x, t) ϕ=ϕ(x ,t)

全微分: d ϕ ( x ⃗ , t ) = ∇ ϕ ⋅ d x ⃗ = ∂ ϕ ( x ⃗ , t ) ∂ x ⃗ ⋅ d x ⃗ d\phi(\vec x, t)=\nabla\phi\cdot d\vec x= \frac{\partial \phi(\vec x, t)}{\partial \vec x}\cdot d\vec x dϕ(x ,t)=ϕdx =x ϕ(x ,t)dx

x ⃗ ( X ⃗ , t ) \vec x(\vec X, t) x (X ,t), 则:
在这里插入图片描述
直角坐标系下的 d x ⃗ d\vec x dx 的分量可以通过以下点乘得到:
在这里插入图片描述

张量 F表示成:
在这里插入图片描述

在这里插入图片描述

可以用下标大写表示:
∗ i , J ≡ ∂ ∗ i ∂ X j ≠ ∗ i , j ≡ ∂ ∗ i ∂ x j *_{i,J}\equiv\frac{\partial *_i}{\partial X_j} \neq *_{i,j} \equiv \frac{\partial *_i}{\partial x_j} i,JXji=i,jxji

用大写Grad表示:

G r a d ( ∗ ) = ∇ X ⃗ ( ∗ ) = ∂ ( ∗ ) ∂ X i ⨂ e ^ i Grad(*)=\nabla_{\vec X}(*)=\frac{\partial (*)}{\partial X_i} \bigotimes \hat e_i Grad()=X ()=Xi()e^i

g r a d ( ∗ ) = ∇ x ⃗ ( ∗ ) = ∂ ( ∗ ) ∂ x i ⨂ e ^ i grad(*)=\nabla_{\vec x}(*)=\frac{\partial (*)}{\partial x_i} \bigotimes \hat e_i grad()=x ()=xi()e^i

方程的逆变换:
d X ⃗ = F − 1 ⋅ d x ⃗ \boxed{d \vec X = F^{-1} \cdot d \vec x} dX =F1dx

其中 F − 1 F^{-1} F1空间变形梯度

在这里插入图片描述
在这里插入图片描述
矩阵的逆的分量可由下式求得:

在这里插入图片描述
J J J 关于 F F F 的导数如下:
在这里插入图片描述

在这里插入图片描述
根据代数余子式和逆矩阵的定义:
在这里插入图片描述
用张量的第三主不变量表示上述方程:
在这里插入图片描述
方程的逆:

在这里插入图片描述
所以:

在这里插入图片描述
证明如下:
在这里插入图片描述
在kq , 张量 ϵ q j k = ϵ j k q = − ϵ j q k \epsilon_{qjk}=\epsilon_{jkq}=-\epsilon_{jqk} ϵqjk=ϵjkq=ϵjqk 是反对称的,然而 x n , k q x_{n, kq} xn,kq是对称的, 所以 ϵ q j k x n , k q = 0 j n \epsilon_{qjk}x_{n,kq}=0_{jn} ϵqjkxn,kq=0jn

所以可以证明 ( J − 1 x q , p ) , q = 0 (J^{-1}x_{q,p})_{,q}=0 (J1xq,p),q=0

如果 u ⃗ ( x ⃗ , t ) \vec u(\vec x, t) u (x ,t) σ ( x ⃗ , t ) \sigma (\vec x, t) σ(x ,t) 分别是向量和二阶张量,满足以下关系:

在这里插入图片描述
下标形式:
在这里插入图片描述
在这里插入图片描述

问题2.5 ϕ ( X ⃗ , t ) \phi(\vec X, t) ϕ(X ,t) 是一个拉格朗日描述的标量场

在这里插入图片描述

位移梯度张量(物质和空间描述)

位移 u ⃗ \vec u u 的拉格朗日和欧拉描述:

在这里插入图片描述
对位移 u i ( X ⃗ , t ) = x i ( X ⃗ , t ) − X i u_i(\vec X, t)=x_i(\vec X, t)-X_i ui(X ,t)=xi(X ,t)Xi 关于 X ⃗ \vec X X 求偏导:

在这里插入图片描述
J \mathcal J J物质位移梯度张量

对位移 u i ( x ⃗ , t ) = x i − X i ( x ⃗ , t ) u_i(\vec x, t)=x_i - X_i(\vec x, t) ui(x ,t)=xiXi(x ,t) 关于 X ⃗ \vec X X 求偏导:

在这里插入图片描述

j \mathcal j j空间位移梯度张量

在这里插入图片描述

由于:

在这里插入图片描述

可以得到 j 和 J \mathcal j 和 \mathcal J jJ之间的关系:

在这里插入图片描述

问题2.6 位移场

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

变形梯度的物质时间导数和雅可比行列式的物质时间导数

F F F 的物质时间导数——空间速度梯度

F F F 的物质时间导数:

在这里插入图片描述
将速度表示成欧拉形式, v i ( X ⃗ ( x ⃗ , t ) , t ) v_i(\vec X(\vec x, t), t) vi(X (x ,t),t) , 应用链式法则:

在这里插入图片描述
张量表示:

F ˙ = l ⋅ F \boxed{\dot F = \mathcal l \cdot F} F˙=lF

其中 l \mathcal l l 是空间速度梯度,定义为:

l ( x ⃗ , t ) = ∇ x ⃗ v ⃗ ( x ⃗ , t ) = F ˙ ⋅ F − 1 空间速度梯度 \boxed{\mathcal l(\vec x, t)=\nabla_{\vec x}\vec v(\vec x, t)=\dot F \cdot F^{-1}} 空间速度梯度 l(x ,t)=x v (x ,t)=F˙F1空间速度梯度

问题2.7 令 d x ⃗ d\vec x dx 是一个在当前构形下的微分线单元, 求 d x ⃗ d\vec x dx 的物质时间导数

在这里插入图片描述
D D t d x ⃗ = ∇ x ⃗ v ⃗ ⋅ d x ⃗ \frac{D}{Dt}d\vec x=\nabla_{\vec x}\vec v\cdot d \vec x DtDdx =x v dx

变形率和自旋张量

张量 l \mathcal l l 可以分解成对称部分和反对称部分:

在这里插入图片描述
由此,可以定义以下张量:

l s y m = D ( x ⃗ , t ) \mathcal l^{sym}=D(\vec x, t) lsym=D(x ,t)- 变形率张量
l s k e w = W ( x ⃗ , t ) \mathcal l^{skew}=W(\vec x, t) lskew=W(x ,t)-自旋、旋转率张量或涡量张量

D D D W W W 的分量分别是:

在这里插入图片描述
自旋张量有三个独立的分量:

在这里插入图片描述

可以定义涡度向量场 ω ⃗ = 2 w ⃗ \vec \omega=2 \vec w ω =2w

另外,根据反对称张量定义:

在这里插入图片描述
并且已经证明过 : 2 w ⃗ = r o t ( v ⃗ ) = ∇ ⃗ x ⃗ ∧ v ⃗ 2 \vec w=rot(\vec v)= \vec \nabla_{\vec x} \wedge \vec v 2w =rot(v )= x v

其中 w ⃗ \vec w w 是反对称张量 ( ∇ x ⃗ v ⃗ ) s k e w (\nabla_{\vec x}\vec v)^{skew} (x v )skew 关联的轴向量, 因此涡度向量表示为:

ω ⃗ = 2 w ⃗ = r o t ( v ⃗ ) = ∇ ⃗ x ⃗ ∧ v ⃗ 涡度向量 \boxed{\vec \omega=2\vec w = rot(\vec v)=\vec \nabla_{\vec x}\wedge \vec v} 涡度向量 ω =2w =rot(v )= x v 涡度向量

由于下式成立:

在这里插入图片描述
那么 D = 0 D = 0 D=0 表征为一个刚体运动,此外, D ( d x ⃗ ) D t = w ⃗ ∧ d x ⃗ \frac{D(d\vec x)}{Dt}=\vec w \wedge d \vec x DtD(dx )=w dx 成立,以下为证明:

在这里插入图片描述
为了证明 D = 0 D = 0 D=0 表征的是刚体运动,也就是说质点之间的距离是不发生改变的,也就是说 d x ⃗ d\vec x dx 的大小不随时间改变, 所以考察一下 ∣ ∣ d x ⃗ ∣ ∣ 2 ||d \vec x||^2 ∣∣dx 2 的物质时间导数:

在这里插入图片描述
其中,用到了 A s k e w : B s y m = 0    ⟹    W : ( d x ⃗ ⨂ d x ⃗ ) = 0 A^{skew}:B^{sym}=0 \implies W:(d \vec x \bigotimes d \vec x)=0 Askew:Bsym=0W:(dx dx )=0,所以 d x ⃗ d \vec x dx 的大小不随时间改变

如果自旋张量是一个零张量 W = 0 W = 0 W=0, 那么速度场被认为是无旋的, 因此 ∇ ⃗ x ⃗ ∧ v ⃗ = 0 ⃗ \vec \nabla_{\vec x} \wedge \vec v=\vec 0 x v =0

在问题2.3 中,以下的关系是成立的:

∇ x ⃗ v ⃗ ⋅ v ⃗ = ∇ x ⃗ ( v 2 2 ) + 1 2 ( ∇ ⃗ x ⃗ ∧ v ⃗ ) ∧ v ⃗ \nabla _{\vec x}\vec v \cdot \vec v=\nabla_{\vec x}(\frac{v^2}{2})+\frac{1}{2}(\vec \nabla_{\vec x}\wedge \vec v) \wedge \vec v x v v =x (2v2)+21( x v )v

推导:

在这里插入图片描述
2 ( ∇ x ⃗ v ⃗ ) T ⋅ v ⃗ 2 (\nabla_{\vec x} \vec v)^T\cdot \vec v 2(x v )Tv 可以写成下标形式 2 v j , i v j 2 v_{j,i} v_j 2vj,ivj, 等价于
( ∣ ∣ v ⃗ ∣ ∣ 2 ) , i = ( v 2 ) , i = ( v ⃗ ⋅ v ⃗ ) , i = ( v j v j ) , i = v j , i v j + v j v j , i = 2 v j v j , i (||\vec v||^2)_{,i}=(v^2)_{,i}=(\vec v \cdot \vec v)_{,i}=(v_jv_j)_{,i}=v_{j,i}v_j+v_jv_{j,i}=2v_jv_{j,i} (∣∣v 2),i=(v2),i=(v v ),i=(vjvj),i=vj,ivj+vjvj,i=2vjvj,i
因此:

在这里插入图片描述

F − 1 F^{-1} F1 的物质时间导数

空间变形梯度 F − 1 F^{-1} F1 的物质时间导数:

在这里插入图片描述
所以:

在这里插入图片描述

F ˙ − 1 = − F − 1 ⋅ l \boxed{\dot F^{-1}=-F^{-1}\cdot \mathcal l} F˙1=F1l

雅可比行列式的物质时间导数

雅可比行列式的物质时间导数:

在这里插入图片描述

以下关系成立:

在这里插入图片描述
将以上 x ˙ 1 , P , x ˙ 2 , Q , x ˙ 3 , R \dot x_{1,P}, \dot x_{2,Q}, \dot x_{3,R} x˙1,P,x˙2,Q,x˙3,R 代入到 D ( J ) D t \frac{D(J)}{Dt} DtD(J)

在这里插入图片描述

第一项表示为:

在这里插入图片描述
所以,同样地,可以得到:

在这里插入图片描述
那么:

在这里插入图片描述
其中用到了反对称张量的迹为零

T r ( l ) = T r ( D + W ) = T r ( D ) + T r ( W ) = T r ( D ) Tr(\mathcal l)=Tr(D + W)=Tr(D) + Tr(W) =Tr(D) Tr(l)=Tr(D+W)=Tr(D)+Tr(W)=Tr(D)

雅可比行列式的物质时间导数也可以表示成:

在这里插入图片描述

问题 2.8

在这里插入图片描述

参考教材:

Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
连续介质力学讲义pdf是一本讲述连续介质力学理论和应用的电子书。连续介质力学是研究固体和流体等连续性物质力学性质的学科。这本讲义通过对连续介质的运动、力学和热力学性质进行全面的扩展和深入探讨,为读者提供了深入理解连续介质力学基本原理和相关应用的重要资源。 这本讲义首先介绍了连续介质力学的基本概念和基本假设,包括描述连续介质的宏观和微观性质的数学形式。然后,它详细讨论了连续介质的运动方程和应力张量的定义,介绍了力学平衡和不变性原理的应用。此外,还包含了流体连续介质力学的特殊情况,如不可压缩流体和可压缩流体的处理方法和基本方程。 讲义还介绍了弹性和塑性力学,探讨了弹性介质的应力-应变关系以及材料的本构关系。此外,它还包含了流变学的基本原理和流变体的力学性质。最后,该讲义还涵盖了热力学连续介质力学的耦合问题,讨论了热传导、对流和辐射传热等方面的基本原理。 总的来说,连续介质力学讲义pdf是一本全面而详尽的学习材料,涵盖了连续介质力学理论与应用的各个方面。它适用于从事力学研究和工程实践的学生、教师和工程师。无论是理论研究还是应用开发,这本讲义都能为读者提供所需的基础知识和工具,帮助他们更好地理解和应用连续介质力学

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值