【非线性连续介质力学】文献综述

【非线性连续介质力学】文献综述

本文翻译自新南威尔士大学O’Shea, Daniel的博士论文的文献综述部分:Hyperelasticity for soft biological tissues and fibre-reinforced composites using orthotropic fourth-order tensors

0. 简介

本文重点关注非线性连续介质力学的研究现状,特别是各向异性体。

本文将按照时间顺序详细说明连续介质力学的历史起源,在力学领域的发展和演变,以及过程中催生出来的能够预测纤维增强复合材料和软生物组织高度非线性力学响应的数学和计算工具。对经典力学原理和非线性弹性力学知识的学习有助于理解本文提出的正交各向异性超弹性建模和计算的动机和新颖之处。

拉格朗日、纳维、胡克、柯西和格林等人的工作,在有限运动学和热力学原理的发展中起到了重要作用,这些理论被广泛应用于描述非线性弹性材料行为。Eringen、Rivlin和Spencer等人在各向同性体上重点使用的是基于不变量来构建应变能函数,以此描述有限变形。然后,自然而然就推广到各向异性领域(方向相关),并且引入了结构张量的形式以及伪不变量作为数学工具。

基于唯象学理论的非线性连续介质力学,是通过拟合实验数据来获取和修正模型参数,并且在揭示定向微结构胶原纤维对软组织力学行为的影响中发挥了重要作用。总的来说,数学模型严格受到实验室数据的限制,并且一般只能专门用来描述特定的生物组织材料,而非适用于所有情况。

随着纤维增强复合材料的发展,航空航天、建筑、机器人、医疗植入和假肢等领域都依赖这些前沿领域的研究。然而,传统的数学方法在预测层压复合材料中复杂界面应力应变行为时,在计算中往往存在数值不稳定和不可靠性。

本文结尾,将会展示科学家们是如何在经典的科学工作的基础上,利用数学框架对正交各向异性可变形体进行表征的。这些技术将在理解人体器官和组织的复杂结构和工作原理中起到至关重要的作用。

1. 非线性连续介质力学历史

现代连续介质力学的语言是微分几何。这些工作来自于Leonhard Euler对一般曲面曲率的研究工作以及19世纪中叶Joseph Lagrange的著名著作《Analytique Méchanique》。

如今,弹性力学使用的微分方程是由纳维推出的,然而,现代工程师们所依赖的应力应变模型则是由柯西发展的,并提出了柯西的能量守恒定律和运动方程。

在这之前,对物体变形和作用力之间的关系的发现则是来自于罗伯特·胡克,并且他写下了一个拉丁短语:

“Ut tensio, sic vis”

意思是,张力与力相对应。这就是我们通常所说的胡克定律。

随后A.E.Love对其进行了解释:

“The power of any spring is in the same proportion with the tension thereof"

意思是,任何弹簧的力与其张力成正比。

线性化的现代连续介质力学其实是三维的广义胡克定律,最早将此广义胡克定律引入应力应变概念的是1827年的Augustin Cauchy。通过Cauchy的小应变张量 ϵ \epsilon ϵ ,可以描述运动学的线性化理论,而胡克定律则提供了与小应力 σ \sigma σ的三维刚度关系。

如今,用广义胡克定律描述的变形体被称为“柯西弹性体”。同样地,柯西引入了拉伸主值和应力主值等概念,这些概念都成为了表示应变能函数的基础。另外,一个叫Gabriel Lamé的数学家,通过考虑材料的对称性,提供了一个将描述各向同性体的参数减少为两个的方法,至今这两个参数仍以其名字命名,即拉梅系数。

对于某些硫化弹性体,其应力应变行为在大的荷载下表现出非线性行为,至此,胡克弹性体将不再适用。因此,亟需一种健壮的数学框架来应对这些问题。有关有限弹性变形的理论是由George Green在1839年提出的,他参考了光学领域,引入了格林-拉格朗日应变张量,这个张量至今在现代连续介质力学中仍在广泛使用。这个张量是直接从变形梯度张量推导得来的,并且可以在小变形上也适用胡克定律,这种在所有变形尺度上保持稳定性的特点是非线性公式的重要特点。通过忽略高阶项,可以很容易退化到柯西小应变张量。基于此,非线性运动学的描述以及应力响应,建立了非线性弹性材料的固体力学。

应力和非线性应变能函数的概念是将有限变形运动学和热力学原理融合进一个同一个力学框架的结果。Clifford Truesdell在1960年代建立了连续介质力学(从当今的理解来看),他的两部重要作品《Classical Field Theories》和《The Non-linear Field Theories of Mechanics》对非线性连续体力学进行广泛的概述和提供了详实的背景。

本构方程实际上是将应力测量和变形梯度联系起来,并且描述这个关系的函数被称为响应函数。这个响应函数表征了弹性材料的材料特性,确定给定的材料的响应函数需要对能量和热力学相关的量进行微分分析。

如果存在一个函数,这个函数是关于变形梯度可导的,那么这个材料被称为超弹性。这个导数返回的是与第一类皮奥拉-基尔霍夫应力相关联的响应函数,这就定义了所谓的应变能函数,是一种衡量连续体变形后所储存的能量。通常定义为单位体积,用 Ψ \Psi Ψ来表示。

应变能函数需要满足凸性客观性条件,保证稳定性和可以得到物理解。客观性,或者说是不变性,是与能量的守恒相关的,可以确保一个热力学过程转换到另一个热力学过程。这也意味着应变能函数必须满足物质框架不变性原理,Clifford Truesdell定义如下:

“Constitutive equations involving thermodynamic and mechanical variables must be invariant under change of frame”

意思是,涉及热力学和力学变量的本构方程在框架变换下必须保持不变,这里的框架变换可以理解成改变观察者的视角。

物质框架不变性是任何本构方程都需要满足的本质特征。应变能通过将其表达成一些运动学张量的不变量的函数来满足物质框架不变性,其中最受欢迎的是来自Rivlin在《Large elastic deformations of isotropic materials》的重要工作。因此,基于不变量的超弹性因其数学上的简单自然而然地得到了关注,并且至今仍然是许多数学家的选择。

第二个需要满足的条件是凸性,是用来判断微分方程是否存在解的重要指标。对于给定边界条件的弹性力学问题,解通常是系统总能量的最小值。Holzapfel指出,解的存在性是基于应变能函数的多凸性条件。1976年John Ball在他的作品《Convexity conditions and existence theorems in nonlinear elasticity》详细阐述了多凸性的概念,他指出,解的存在性问题与寻找非线性弹性的令人满意的本构不等式问题是密不可分的。Itskov等人也解释道,多凸性意味着拟凸性,拟凸性又保证了椭圆性,从而满足了Legendre-Hadamard条件,而这又确保了连续体的总能量的全局最小是存在的。最近Neff的工作基于Cosserat brothers理论拓展了这个概念,证明了非经典微极体固体的最小是存在的。

各向同性Hookean材料的应变能函数表述如下:

Ψ ~ = 1 2 ( λ t r 2 ( ϵ ) + μ t r ( ϵ 2 ) ) \tilde \Psi = \frac{1}{2}(\lambda \rm{tr}^2(\epsilon) + \mu \rm{tr}(\epsilon^2)) Ψ~=21(λtr2(ϵ)+μtr(ϵ2))
两个参数即上文提到的拉梅系数。

这种解耦形式将应变能分解成两个各向同性的二次函数,这种将应变能函数分解成两个不同的物理部分在工程中是很常见的。但是,Truesdell and Noll认为,Hookean应变能模型在超出小变形范围后没有物理意义,也就是不再满足物质框架不变性原理。这意味着,拉梅系数只能在柯西连续体使用。然而,Ciarlet认为,这只是个误解,并且给出了证明,即应变能的拉梅分解不局限于线性弹性体,还可以正确地适用于各向同性弹性体。

各向同性的概念反映的是连续体的响应函数不依赖任何叠加的刚体运动,任何不满足这个性质的材料,都被称为各向异性。对于给定材料在有限的一组变换下的响应函数的客观性可以决定其各向异性程度,可以归类到对称群,相关的重要工作可以参考Ogden或Truesdell and Noll的工作。在三维空间中,Spencer 定义了32种晶体类,每种晶体类都与其自己正交张量变换群相关。在连续介质力学中,比较有用的概念是对称性,例如,各向同性、横向各向同性和正交各向异性等材料特性分别具有零个、一个和两个偏爱方向,并且在正交各向异性的情况下,这两个偏爱方向是相互正交的。

同时,早期的很多连续介质力学工作都是基于各向同性材料的,但是,随着对生物组织或纤维增强复合材料的研究,理解这种具有偏爱方向的材料力学行为变得越来越重要,这推动了对各向异性行为的研究需求。

本文提出的模型必须尽可能满足上文提到的想法和条件,首先,需要有一个可以捕捉各向异性行为的模型;其次,当受到小应变作用时,对超弹性材料来说,应该可以保持胡克响应。Truesdell的物质框架不变性和Ball的凸性将成为我们所提出的模型的边界条件,以此来保证我们的弹性力学问题在任何变形尺度和任何程度的各向异性都能保证稳定。

有限变形的自然对数应变张量

对于有限变形,怎么描述运动学的测量其实是不简单,也不明显。Heinrich Hencky在他的工作中就有详细讨论,并给出对给定模型的有限应变张量的选择:

“At the foundation of all elasticity theories lies the definition of strain, and before introducing a new law of elasticity we must explain how finite strain is to be measured”

意思是,所有的弹性理论的基础依赖于应变的定义,在介绍一个新的弹性理论之前必须解释清楚有限应变是如何衡量的。

格林-拉格朗日应变张量,即欧拉-阿尔曼西应变张量是工程中使用最多的有限变形测量,因为它们直接从变形梯度得到的。但是,有文献提到这些张量的物理意义并不直观,而在有限变形分析中最具有物理意义的是对数应变张量,这在非线性弹性力学中被称为“真实应变”。

Ludwik是被认为第一个在单轴意义下引入对数应变概念的人,然而,在非线性弹性领域的完整应用对数应变的工作仍归功于Hencky,他在1928年的一篇论文里,提出了连续介质力学框架的对数应变张量的概念,这个概念得到了广泛的认可,并将其称为Hencky应变。

对于物质的可压缩性分析中,使用主拉伸的自然对数来分析被证明是方便的,Hencky本人亲自展示了这种方法的有用性,基于的P. W. Bridgman对一系列不同的各向同性材料的广泛实验观察。Anand进一步证明了,针对小变形的Hookean形式应变能在将柯西应变替换为自然对数应变,也能很好地与大变形吻合。与该工作相关的非线性应变能的模型通常被称作各向同性超弹性的Hencky模型。

最近,Latorre and Montáns证明了对数剪切应变的几何意义,强调Hencky应变的特殊性质是,允许弹性体使用相同的体积-等体的能量分解。这在Xiao的工作得到证明,该文中提到大部分的有限应变测量都是耦合了球形和偏形部分,对数应变则可以适当地进行加法分解。最近,Neff给出了对数应变的物理特性和物理意义,再一次确认了Hencky应变是柯西无穷小应变的最自然推广。它们发现,线性Hookean模型和二次Hencky能量之间存在紧密的几何关系,在所有可能的有限应变张量中,只有对数应变张量满足共轴变形的叠加法则。

此外,Neff等人给出了二次Hencky应变能函数的几何解释,将其描述为变形梯度张量到特殊的二阶张量正交群的测地距离的平方。提供几何解释有助于科学家理解使用这种应变测量的动机,通常可以建立各分量的物理意义。在早期的工作中,Neff等人提出了Hencky能量的指数形式的解耦形式,并证明了模型的秩一凸性,进一步鼓励了自然对数应变的使用。

秩一凸性是指某个函数在其参数向量的每个方向上都是凸函数,具体来说,对于函数 ,如果对于任意的参数向量 和任意的标量 ,都有:

f ( t x + ( 1 − t ) y ) ≤ t f ( x ) + ( 1 − t ) f ( y ) f(t\pmb x + (1-t)\pmb y ) ≤ tf(\pmb x ) + (1-t)f(\pmb y ) f(tx+(1t)y)tf(x)+(1t)f(y)
其中 和 是参数向量, 是一个标量。这个不等式表示函数在参数空间中的任意两点连线上的值都不大于这条线段的两端点对应的函数值的加权平均。如果一个函数满足这个性质,那么就称它是秩一凸的。秩一凸性在优化问题和凸分析中有重要的应用,因为它能够保证一些优化问题的收敛性和解的唯一性。

连续介质力学的唯象学方法

在连续介质力学中,唯象学方法是一种基于实验观察和经验规律的方法,而不涉及材料内部微观结构或基本物理原理的细节。这种方法的基本思想是通过观察和实验来建立材料的宏观行为和性质,而不需要了解其微观结构。在这种方法中,材料的行为通常由一些经验参数或材料参数来描述,这些参数通过实验测量或拟合来获得,而不需要深入研究材料的内部结构。尽管这种方法在描述材料的整体行为方面非常有效,但它可能无法提供对材料行为的深入理解,尤其是在考虑到材料微观结构对宏观行为的影响时。

通过指定特定的应变能函数,并一组适当的材料参数,这些参数可以控制连续体在任何给定的变形模式下的响应,这种方法叫做连续介质力学的唯象学方法。这是为了将其与统计方法区分开,统计方法致力于将力学响应与连续体分子结构联系起来,统计方法包括高斯理论或者大分子网络理论,而那些与橡胶相关的理论由Treloar发展得到。

最终,还是需要将唯象学方法和统计方法统一起来,Yeoh and Fleming指出,唯象学方法是可取的,直到某些基本的与分子概念相关的原理被发现,唯象学方法都只能被称为一种拟合曲线方法。唯象学方法被广泛采用,对于给定的橡胶弹性体或生物组织材料,都能找到大量的模型。形式不唯一,应变能函数需要满足的就只有凸性和不变性条件。

在实际操作中,一旦应变能函数的形式被确定,随后就导出本构定律,则可以校准材料参数,以此使得非线性模型可以最佳拟合给定的实验数据。所以,需要某种形式的回归分析使得可以确定最适合的材料参数,其中最常用的算法是Levenberg-Marquardt算法(见Mihai,Ogden,Twizell 的工作)。这个优化算法采用的是梯度下降法,所以只能得到非线性目标函数的局部最小解。因此,有评论指出,这些模型高度依赖解决方案所提供的初始种子。同时,这种拟合参数的优化唯象学方法并不能带来对纤维分布和微观结构响应的洞察,但是可以认为它是有效的,因为它符合所使用的实验数据的连续性特性。

提出一个非线性应变能函数并校准它以拟合数据,这是非常直接且可行的方法。但是,正如Yeoh所指出的那样,工程师们在能够将材料参数归于显著的物理意义上是具有挑战性的。具有物理意义的材料常数通常意味着它符合科学方法,可以在实验中反复测量。Truesdell and Noll建议将在唯象学连续介质力学框架下的变量当作统计分子作用的“平均值”。

最近,确定材料参数的计算流程应用了集成了机器学习的系统,Cilla等人利用三个不同的监督机器学习方法:支持向量机用于回归,Bagging决策树以及采用了人工神经网络的多感知机。该算法的使用分为两个阶段,一个是实施阶段,一个是验证阶段,用来衡量模型的好坏。文章承认机器学习在解决真实实验曲线存在的变异性时存在局限性,但认为计算开销上的显著降低可能使所提出的方法最终取代传统的基于梯度下降的优化方法。Liu等人采用机器学习技术分析主动脉壁,并发现一旦模型训练好,算法可以在一秒钟内估计所需的一组材料参数,这种确定材料参数的便利性对连续介质力学的唯象学方法是有益处。

2. 超弹性的不变量方法

应变能函数需要满足在所有的坐标变换下的不变性条件,即物质框架不变性原理。对于各向同性连续体,应变能可以写成对称的右柯西-格林变形张量的函数,使其在变换下保持客观性。

关于不变量理论与连续介质力学的关系最有用的工作来自Spencer,他详细介绍了具有不同内部对称性的二阶张量所需的完整基。文中提供的表格允许用户查阅给定系统的二阶张量的完整基和不变量。不变量,是向量和张量的函数性质,在正交变换保持不变。一个标量值各向同性张量函数被称为张量的不变量,其中迹函数被广泛使用。三维情况下,组成最小完整基的对称二阶张量的基本不变量是:

i 1 = t r ( A ) , i 2 = t r ( A 2 ) , i 3 = t r ( A 3 ) i_1 = \rm{tr}(\pmb A),\quad i_2 = \rm{tr}(\pmb A^2),\quad i_3 = \rm{tr}(\pmb A^3) i1=tr(A),i2=tr(A2),i3=tr(A3)
另外,三维情况下常用的主不变量如下:

I 1 = t r ( A ) , I 2 = 1 2 ( t r 2 ( A ) − t r ( A 2 ) ) , I 3 = d e t ( A ) I_1 = \rm{tr}(\pmb A),\quad I_2 =\frac{1}{2}(\rm{tr}^2(\pmb A) - \rm{tr}(\pmb A^2)) ,\quad I_3 = \rm{det}(\pmb A) I1=tr(A),I2=21(tr2(A)tr(A2)),I3=det(A)
主不变量构建二阶张量的特征多项式并以此得到Cayley-Hamilton理论。将 i 1 , i 2 , i 3 i_1,i_2,i_3 i1,i2,i3称为基本不变量,以此区分 I 1 , I 2 , I 3 I_1,I_2,I_3 I1,I2,I3主不变量。

为了满足物质框架不变性原理和凸性条件,各向同性材料的应变能可以写成如下不变量形式:

Ψ = Ψ ( I 1 , I 2 , I 3 ) \Psi = \Psi(I_1,I_2,I_3) Ψ=Ψ(I1,I2,I3)
第三个主不变量是关于连续体在变形过程的体积变化。对于完全不可压缩的材料,其材料特性是在任何荷载作用下,都只有等体积变形。在这样的理想情况下,Attard和Hunt解释说可能存在一个不影响应变能的静水压力,因此应力不能通过常规方法直接确定。对于大多数的完全不压缩材料的研究,通常会对其第三主不变量施加一个约束,并将所需的静水压力 作为拉格朗日乘子包含其内。

完全不可压缩各向同性应变能密度如下表示:

Ψ ˉ = Ψ ( I 1 , I 2 ) − p f ( I 3 − 1 ) \bar \Psi = \Psi(I_1,I_2) - pf(I_3-1) Ψˉ=Ψ(I1,I2)pf(I31)
然而,完全不可压缩材料是一种理想情况,真实情况是不可能出现,对于橡胶材料,在真实中会被当成一种近不可压缩材料。Kawabata等人,通过实验展示了异戊二烯橡胶的各向同性泊松比为0.499914,非常接近理论不可压缩极限的0.5。

人为地强制进行不可压缩状态可以极大地降低模型的数学复杂度以及固体所需的材料参数,然而,有人认为,最准确和最完整的材料模型还是需要包括可压缩性。

对于从各向同性到各向异性的发展,需要定义伪不变量。De Rosa等人指出,Rivlin类型的 I 1 , I 2 , I 3 I_1,I_2,I_3 I1,I2,I3 主不变量的物理解释难以捉摸,使得文献研究开始考虑一种新的物理不变量方法来进行建模。Shariff和Criscione等人的文章中提供了替代的物理不变量作为例子,Criscione提出了一组针对横向各向同性的5个不变量,可以将应变的不同物理行为区分开。这允许应变能函数的不同部分可以直接由以下试验确定:一个不变量被扰动并测量,同时其他部分保持不变。然后,如果有的话,确定材料对该不变量应变行为的依赖程度。Shariff的上述引文扩展了“物理不变量”的概念,以涵盖各向异性响应。

类橡胶固体分析

在大应变下建立超弹性的应变能函数一开始仅适用于简单的各向同性情况,因为通过对橡胶固体行为分析表明,这些橡胶固体可以被承受很大的拉伸(最高可达700%),并且这种橡胶固体是被当作各向同性和近不可压缩材料的。在Treloar的工作中,广泛研究了橡胶的应力-应变行为,Treloar提供了非常优秀的实验数据,橡胶的本构模型通常以此作为基准。在他的工作中,设计了三种硫化橡胶的变形状态:单轴拉伸、双轴拉伸和纯剪切。研究了两种橡胶,第一种是8%硫橡胶,展示出最高直至400%的拉伸下仍具有可恢复弹性;第二种是基于乳胶的橡胶,当时经常用于工业应用。橡胶的特征是在实验中检测到的S形曲线,如下图所示:

img

超弹性材料的各向同性应变能公式的大部分工作来自于Rivlin一系列关于《Large elastic deformations of isotropic materials》的开创性工作,在这里,Rivlin将应变能密度表示为右柯西-格林变形张量的三个主不变量的函数,Rivlin提出的本构模型系列可以写成如下:

Ψ R i v l i n = ∑ i , j = 0 N C i j ( I 1 − 3 ) i ( I 2 − 3 ) j \Psi_{Rivlin} = \sum_{i,j=0}^NC_{ij}(I_1-3)^i(I_2-3)^j ΨRivlin=i,j=0NCij(I13)i(I23)j
其中, 是材料参数。可以发现,第三主不变量在这里看不到,这是由于事先假设橡胶弹性体是一个完全不可压缩材料。很多文献中的著名模型都是Rivlin模型系列的特殊例子,例如,当 j = 0 j=0 j=0 ,可以得到著名的neo-Hookean模型,用单个模型参数表征了非线性各向同性行为:

Ψ N H = C 10 ( I 1 − 3 ) \Psi_{NH} = C_{10}(I_1 - 3) ΨNH=C10(I13)
如今,neo-Hookean模型仍然是不可压缩各向同性材料的最简单模型。另一个Rivlin模型系列是Mooney-Rivlin模型,这是在考虑了高斯理论后推出来的模型:

Ψ M R = C 10 ( I 1 − 3 ) + C 01 ( I 2 − 3 ) \Psi_{MR} = C_{10}(I_1-3)+C_{01}(I_2-3) ΨMR=C10(I13)+C01(I23)
这是neo-Hookean模型的推广,并且发现它在预测Treloar的橡胶单轴拉伸实验数据时表现更好。最后一个属于Rivlin模型系列的是Yeoh-Fleming模型,考虑了第一主不变量的高阶指数:

Ψ Y e o h = C 10 ( I 1 − 3 ) + C 20 ( I 1 − 3 ) 2 + C 30 ( I 1 − 3 ) 3 \Psi_{Yeoh} = C_{10}(I_1-3)+C_{20}(I_1-3)^2 + C_{30}(I_1-3)^3 ΨYeoh=C10(I13)+C20(I13)2+C30(I13)3
这种形式可以发现各向同性材料的“割线剪切模量”,由于包含关于 I 1 I_1 I1 的高阶项,所以该模型可以与统计方法的协调一致。

对于可压缩模型,Blatz and Ko在1962年提出的形式通过在聚氨酯泡沫弹性体上的应用而变得流行。Holzapfel 对此模型给出了解释。对于等体积变形,这个模型与neo-Hookean模型匹配。随后,是冯元桢将指数型的应变能形式进行了推广,指数函数有助于拟合橡胶在有限变形时产生的S形实验曲线:

Ψ F u n g = 1 2 C ( e Q − 1 ) \Psi_{Fung} = \frac{1}{2}C(e^Q - 1) ΨFung=21C(eQ1)
冯元桢模型里的参数 是格林-拉格朗日应变张量的二次度量,指数型模型得到了Neff等人的赞赏,并引入了Hencky能量的修正指数形式。Von Hoegen随后将这个模型拓展到横向各向异性,并且取得了良好的结果。

基于拉伸的超弹性

以上的讨论都是将应变能函数写成三维右格林-拉格朗日应变张量的三个主不变量的函数形式,相反,Valanis and Landel 指出,各向同性体的应变能函数可以写成变形主拉伸的可分离函数,这通常被称为Valanis-Landel 假设:

Ψ = ∑ i = 1 3 f ( λ i ) \Psi = \sum_{i=1}^{3} f(\lambda_i) Ψ=i=13f(λi)
基于拉伸的弹性体相比基于不变量的弹性体具有以下优势,应变能函数的形状可以通过实验更容易地表征。通常情况,每个主拉伸的函数 是一样的,这一概念在Ogden模型中得到了广泛的推广。Ogden模型如今已经成为被广泛认为是最适合各向同性超弹性橡胶材料本构的模型,如下:

Ψ O g d e n = 1 2 ∑ i = 1 N μ i α i ( λ 1 α i + λ 2 α i + λ 3 α i − 1 ) \Psi_{Ogden} = \frac{1}{2}\sum_{i=1}^N\frac{\mu_i}{\alpha_i}(\lambda_1^{\alpha_i}+\lambda_2^{\alpha_i} + \lambda_3^{\alpha_i}-1) ΨOgden=21i=1Nαiμi(λ1αi+λ2αi+λ3αi1)
经验表明,Ogden模型在 N = 3 , o r N = 4 N=3,\quad \rm{or} \quad N=4 N=3,orN=4 情况下与实验数据具有出色的拟合效果。通过强制要求 μ i α i > 0 , f o r a l l i \mu_i\alpha_i>0,\quad \rm{for all }i μiαi>0,foralli ,可以确保Ogden模型的稳定性。

然而,Yeoh指出了在使用Ogden模型时存在的困难,主要是关于利用计算回归分析确定参数 α i , μ i \alpha_i,\mu_i αi,μi。特别地,是 α i \alpha_i αi 指标有时候会带来一些麻烦,对于剪切问题,往往无法区分正负。同时,对于拉伸和压缩情况,这些指标在小值时也存在一些问题。因此,自动回归方法在拟合单轴和多轴数据时可能会遇到问题。Yeoh建议,利用工程经验以及对橡胶预期行为的直觉而不是依赖复杂的数值算法来确定模型参数,因为这种方法效率比较低下。

Miehe和Simo and Taylor探索了基于拉伸的模型,将其详实地应用到有限元方法中,并描述了其中的困难。Simo and Taylor详细说明了在将基于拉伸方法应用到有限元方法中时出现的条件和效率问题。它们的三场变分原理避免了很多与不可压缩性相关的病态问题。Miehe提供了一个模型,该模型在应变能函数中应用了Finger变形张量的特征值,并且提供了三种有限元公式,取得了一定的成功。一个包含通过增广拉格朗日方法处理不可压缩性条件的混合雅可比压力公式似乎是最强大的。

同时,Başar and Itskov的工作将Ogden模型转换成各向同性不变量的等效形式,本质上类似于Rivlin方法,以便可以将理论应用于数值实现。这种方法提前避免了先前提到的需要通过特征值分析确定主拉伸而带来的效率低下问题。至今,Ogden模型仍然广泛使用于非线性各向同性有限元分析。

Ogden模型仍然是最受欢迎的模型,尽管Treloar指出其本质上与使用不变量的Rivlin模型是等价的。Rivlin为自己的模型辩护道,指出Valanis-Landel类型的模型只是Rivlin模型家族的一个特殊例子。然而,使用不变量其实是一种不那么直观的方式来描述变形,因此,主拉伸的表达式通常更受欢迎。当推广到各向异性时,不变量和问题和其物理意义的缺乏只会加剧。根据Criscione的工作,Rivlin 不变量方法对于类橡胶的弹性在实验上最难处理的,而 Ogden 形式或 Criscione 自己的形式则是实验上可处理的。对不变量方法的批评应归结为应变能函数形式中的固有协方差,当使用双轴或单轴试验数据去校准响应函数时,会导致实验误差的放大。在基于主拉伸的方法中,响应项的相互正交性最小化了模型的协方差,因此被认为更适合通过分析双轴试验数据来构建本构。

纤维增强介质的不变量分析

随着对能够描述具有方向依赖性弹性响应的数学模型的需求增加,工程师开始考虑可以表示这种运动的工具,并将人们熟知的各向同性框架拓展到各向异性领域,同时保持客观性。

Boehler是其中第一个提出了在连续介质力学上具有重要实用性和意义的结构张量概念,结构张量是一个对称二阶张量,可以描述环绕在各向同性基质上给定粒子的局部邻域周围的各向异性增强的方向。使用对称二阶张量来表示各向异性的增强可以使得其自身用于基于不变量的应变能函数。Spencer 基于这个工作进行了扩展,在表示超弹性系统的完整基时不仅包括了右柯西-格林变形张量,还包括增强连续体中的有限数量的纤维族的结构张量。然后,就可以建立应变能函数所需的最大不变量集合。对于线弹性,Spencer指出,最多有9个不变量是线性无关的,所以需要9个常量来完全描述基态的正交各向异性材料。在最近的工作中,Shariff就横向各向同性和正交各向异性两种情况所需的最少数量的不变量进行了辩论,因此对具有这些类型材料对称性的连续介质所需基态常数的数量提出了相互冲突的看法。Shariff指出对于正交各向异性需要10个常量,而横向各向同性则需要6个。

不变量 I 4 , I 5 , I 6 , I 7 , I 8 , I 9 , I 10 I_4, I_5,I_6,I_7,I_8,I_9,I_{10} I4,I5,I6,I7,I8,I9,I10(一般叫做“伪不变量”),被定义为二阶结构张量的函数,用来描述包含两组非正交的增强的连续体,这些增强沿着纤维方向进行形变,Hozapfel给出了这些众所周知的不变量的传统形式。从 I 1 I_1 I1 I 10 I_{10} I10 的不变量集通常被认为是Rivlin-Spencer 各向同性不变量。

基于这些伪不变量的应变能函数的假设中,Holzapfel and Ogden提出了以下模型:

Ψ = f ( I 1 ) + g ( I 4 ) + g ( I 6 ) \Psi = f(I_1)+g(I_4) + g(I_6) Ψ=f(I1)+g(I4)+g(I6)
这个模型迅速地被包含胶原增强的生物软组织分析所采用。应变能函数被分解为各向同性部分和各向异性部分,其中各向同性部分只依赖于第一不变量(neo-Hookean模型),各向异性部分分为第四和第六伪不变量的指数型函数。

不变量选择的差异

文献针对超弹性所需的不变量进行了频繁的辩论,以及是否可以为了保持数学上的简便而忽略某些不变量。

neo-Hookean模型忽略了第二不变量 I 2 I_2 I2 ,因此消除了数学上额外的复杂度。然而,Horgan and Smayda展示了第二不变量的重要性,证明它可以提高各向同性弹性体和纤维材料对应变软化的预测。在简单剪切中,第二不变量的加入不会影响对剪切应力的预测能力,然而为了解决纤维材料的Poynting效应,对于预测法向应力,第二不变量不能被忽略。Horgan和Saccomandi 对扭转下的圆柱管的分析表明,忽略第二不变量意味着给定模型将无法估计轴向力。然而,仅依赖第一不变量的各向同性不可压缩模型仍然受欢迎,因为其数学简单并且在数值应用中有效率。

Poynting效应: 指的是材料中纤维或加固元素的取向影响其力学行为的现象,特别是在加载条件下。这些效应在复合材料中非常重要,因为纤维的排列方式会影响应力和应变的分布。在超弹性的背景下,考虑Poynting效应对准确预测材料的响应至关重要,特别是在纤维材料中,纤维的排列方式会极大地影响材料的力学性能。

尽管存在使用10个不变量来描述两个非正交纤维族增强的连续体,但是大部分模型都倾向于忽略大部分的不变量并简化为只有 。Murphy表明,虽然大多数的超弹性横向各向异性的模型更倾向于忽略 而选择 ,但是在实验中重复一个重要的特征的时候,两者都具有重要作用:不同正交材料平面的剪切模量是不同的。

在对脑白质的分析中,冯元桢进一步表明对于预测大剪切行为时,第五不变量是必须的。Horgan and Murphy揭示了相似的结果,针对动脉组织,证明了当只使用不变量 时会出现虚假的结果,这是因为一些非均匀剪切模式错误地预测了各向同性响应。Holzapfel和Ogden的模型只能与有限个变形状态的实验数据吻合,但这不是作者的错,因为目前仍然缺乏对许多生物组织的有效的实验数据,随着精确数据的获取的不断改善,应变能函数只能选择有限个不变量的限制将可以进一步讨论。

以上的大部分模型在分析小变形时无法完全退化成neo-Hookean模型,与小应变保持一致性的重要性是可以保留从线弹性理论中获得的被广泛理解和接受的工程知识。Murphy表明, Ψ ( I 1 , I 4 , I 6 ) \Psi(I_1,I_4,I_6) Ψ(I1,I4,I6) 模型无法描述在小变形下正交各向异性连续体的可能的所有变形。与小变形理论一致性对于保持连续介质在非线性加载下增量行为的一致性也很重要。为了保持数学上的简便,包含Rivlin-Spence完整的不变量集对于想将超弹性模型变成胡克定律的自然延伸是很必要的。

Rivlin-Spence不变量集主要担心的是其大部分没有物理直觉意义,因此无法在实验中单独分离开。如果不变量具有物理意义,那么本构方程测量中的冗余和依赖都可以在实验中进行解释。Shariff 展示了能量函数的具体形式可以通过扰动一个不变量同时保持其他不变来确定,例如,对正交各向异性连续体进行单轴拉伸实验,如果扰动 I 1 , I 2 , I 4 , I 5 , I 6 , I 7 I_1, I_2,I_4,I_5,I_6,I_7 I1,I2,I4,I5,I6,I7 ,则很难区分每个响应是由谁引起的。不变量各自的复杂的物理意义,导致研究上的出现模棱两可的现象,出于这个原因,不使用这些不变量来建立应变能函数可能是比较好的。

3. 应变函数的组成

超弹性材料的应变能函数是一个变形梯度的标量值函数,并约束在客观性和凸性原理。大量的应变能函数解耦成不同的部分,将函数分解为不同的能量,对应不同的力学过程。怎样进行能量分解,以及这种纯粹和完全的解耦是否合乎逻辑,正在研究当中。

拉梅分解

一个各向同性的Hookean(柯西-弹性)材料的应变能函数由以下给出:

Ψ ~ = 1 2 ( λ t r 2 ( ϵ ) + μ t r ( ϵ 2 ) ) \tilde \Psi = \frac{1}{2}(\lambda \rm{tr}^2(\epsilon) + \mu \rm{tr}(\epsilon^2)) Ψ~=21(λtr2(ϵ)+μtr(ϵ2))
函数由两个依赖柯西小应变的函数构成,并且每个函数都由一个拉梅系数表征。这样的应变能函数分解被称为“拉梅类型”。

St Venant-Kirchoff模型和Hencky模型(将小应变替代为格林-拉格朗日或Hencky 应变)都属于拉梅类型的应变能函数分解。拉梅类型的分解将应变能函数分解为一个严格考虑主拉伸之间耦合的项,和一个不考虑耦合的项。

应变能函数的第一项,与各向同性拉梅系数 相关,涉及到在变形过程中每个材料轴的主应变的相互作用;第二项与拉梅系数 相关(各向同性剪切模量),涉及到柯西无穷小应变的Frobenius 范数,包含非耦合的主应变。

Ψ = Ψ c o u p l e d + Ψ u n c o u p l e d \Psi = \Psi_{coupled} + \Psi_{uncoupled} Ψ=Ψcoupled+Ψuncoupled
Attard and Hunt解释了各向同性超弹性的拉梅分解的物理动机,假设主拉伸之间的相互作用或耦合只出现在应变能函数的可压缩部分。应变能函数的耦合项与连续体的可压缩性相关,并且对等体积运动过程的系统的能量没有贡献。

当考虑应变能函数的凸性时,需要谨慎使用拉梅分解。Böhlke and Bertram展示了St Venant-Kirchhoff或者Hencky模型未能在全局范围内成为椭圆型,相反,在存在一个临界变形半径时,这种二次应变能形式不再保证是椭圆型。这里的结论是,在以广义应力和应变表示的任何线弹性本构中都不存在全局多凸性。在Seth-Hill应变家族中,只有使用对数应变张量的情况下,才有可能在有限变形范围表现出强椭圆型的弹性定律。

Flory分解

将应变能函数分解为不同的物理意义部分由Flory引入,变形唯一地由纯体积部分和纯等体积部分组成:

Ψ = Ψ v o l + Ψ ‾ \Psi = \Psi_{vol} + \overline \Psi Ψ=Ψvol+Ψ
这种类型的分解叫做"Flory类型"。对于Hookean弹性体,能量Flory类型表达式如下:

Ψ ~ = 1 2 ( K t r 2 ( ϵ ) + μ t r ( ϵ ˉ 2 ) ) \tilde \Psi = \frac{1}{2}(K\rm{tr}^2(\epsilon) + \mu \rm{tr}(\bar \epsilon^2)) Ψ~=21(Ktr2(ϵ)+μtr(ϵˉ2))
其中, ϵ ˉ \bar \epsilon ϵˉ为柯西偏应变张量, K K K是各向同性体积模量。

体积模量只定义在各向同性体,并且描述的是连续体抵抗体积改变的能力。Penn引述的橡胶的体积模量为 2000 M P a 2000\rm{MPa} 2000MPa ,这么大的体积模量反映的是不可压缩响应。Horgan and Murphy 测得的值是 2500 M P a 2500\rm{MPa} 2500MPa

Kellermann and Attard给出了评论,指出体积模量的概念限制在线弹性。静水压体积应力张量可以通过对体积应变能的微分得到,对小应变尺度仍然具有物理意义。Penn进一步评论道,在对橡胶压缩性建模的研究中,简单地将两种能量(体积和剪切)相加是不可采用的,因为它无法捕捉到在静水压和单轴实验中的实验数据,即使是在小应变下也是如此。

对于超弹性,Flory类型模型引入了对变形梯度张量的分解,分解为不同的体积和等体积部分。可以参考Holzapfel的工作来了解这一过程是如何产生的。通常,等容部分取自Rivlin家族,对于体积能量,Horgan和Murphy 解释说,应变能函数的选择通常取决于工程师的直觉和所要求的简单数学,因此通常采用简单的二次形式。最常用的可压缩应变能在Doll和Schweizerhof 的工作中可以找到。

Flory类型的分解是将应变能中的体积和等容部分进行解耦,然而,Blatz and Ko提出的模型在各向同性泡沫橡胶中很受欢迎,它们指出这两个响应是不可分割耦合在一起。因此,Flory类型的物理合理性,以及这些缺陷对预测合理范围内的力学行为能力的影响程度,仍然存在争议。

应变能函数的其他解耦形式

针对正交各向异性生物软材料组织的最常用的模型来自Holzapfel and Ogden。其动机来源于Weizsäcker的工作,考虑了生物软组织的微观结构形式,Holzapfel 提出的应变能分解成各向同性和各向异性部分:

Ψ H O = Ψ i s o ( I 1 ) + Ψ a n i s o ( I 4 , I 6 ) \Psi_{HO} = \Psi_{iso}(I_1) + \Psi_{aniso}(I_4,I_6) ΨHO=Ψiso(I1)+Ψaniso(I4,I6)
上述表达式表示连续体的各向异性的增强具有非线性响应函数,其形式与各向同性基态不一样。

这种假设的动机是,当没有加载时,胶原纤维是“波浪状”或“起皱的”,并在受到载荷时被激活从而与基态矩阵分离。能量的加法叠加通常被认为是合适的,采用的是仿射变换。

这种类型的最受欢迎模型是来自Holzapfel and Ogden和Gasser关于动脉的研究工作,并且随之被许多学者采用。

最后,Kellermann and Attard展示了一个用各向同性四阶张量的函数作为各向同性超弹性的广义应变能函数,这种方法叫无不变量法。这个模型是格林-弹性材料的应变能的拉梅类型分解,并且是各向同性Hooke定律的广义推广。消除了对运动学张量的不变量的依赖,而是使用四阶张量,使得传统的超弹性应变能函数可以自然地从各向同性理想情况推广到考虑完全各向异性的连续介质力学。

使用四阶张量展示各向同性本构保留了材料取向的直觉,因此保留了包含各向异性行为的能力。对张量分量的简单改变可以在具有纤维增强的材料的力学行为中引入方向偏差,描述给定连续介质的对称群简单地反映在四阶本构张量所具有的对称性质中。本文探讨了Kellermann和Attard的广义各向同性无不变量模型的扩展;以描述横向各向同性和正交各向异性材料的行为。

应变能函数形式的数据驱动方法

以上提到的超弹性建模方法假设应变能函数具有以下形式:多项式、指数、对数或者变形的其他非线性描述。结果是,切线本构是由应变能函数的二次微分得到的。

最近,出现了一种使用描述本构行为的替代方法,该方法使用大量的实验数据进行分析拟合,以实现完美拟合,从而确定应变能函数的形状,而不需要提前假设。这被称为What-You-Prescribe-is-What-You-Get (WYPiWYG) 超弹性。

Sussman and Bathe提出了一种对给定材料的一组实验数据使用三次样条插值的方法,用于拟合不可压缩各向同性材料的拉-压数据集,Sussman和Bathe解释,采用这种方法的动机是消除需要拟合材料常数的需求,这些常数很好地代表了特定的实验数据集。他们的模型按照Valanis-Landel假设解耦各向同性应变能,并使用拉伸的对数度量。为了使模型有效且合适,必须可以提供连续介质的拉伸和压缩数据。

Sussman-Bathe方法后来被Latorre和Montáns扩展,并用于处理横向各向同性和正交各向异性材料。同样,这些研究局限于分析实验数据和假设发生材料的不可压缩行为,尽管假设准不可压缩可以通过体积储能项来测量。

要完全建模一个不可压缩的横向各向同性或正交各向异性材料,分别需要三条和六条实验曲线。使用对数应变的不变量以保持与线弹性解的一致性。WYPiWYG方法仍然在某种程度上是现象学的,对于纤维增强材料,以下免责声明说明了这一点:“我们不假设材料中存在纤维和基体,而是将材料作为一个整体来考虑。因此,该模型可用于各种超弹性材料,不仅限于纤维增强复合材料,并且无需了解独立元素的行为”。

进一步考虑各向异性的扩展,De Rosa等人声称,与典型的超弹性模型不同,WYPiWYG超弹性在所有变形尺度上都与微小应变理论兼容。这是当前工作中非常令人感兴趣的一个特点。研究表明,应用WYPiWYG超弹性在分析多种生物组织如心肌、皮肤和筋膜方面是有益的。前述引文均将超弹性分析局限于完全不可压缩组织。

Crespo等人开始将这些数据驱动方法推广到可压缩材料,尽管目前仅适用于各向同性材料。与材料对称性从模型中进一步移除一样,扩展到可压缩性需要对计算程序进行“非平凡的修改” 。

4. 生物软组织的现代本构建模

胶原蛋白和弹性蛋白:软组织的基础

根据它们的结构和力学特性,活体组织可以分为两个主要类别 - 硬组织或软组织。

硬组织,如骨骼或牙釉质,富含矿物质并具有轻量化但相对坚硬的特性。所有其他组织被称为“软组织”,因为它们具有进行大幅非永久性变形的能力。那些被描述为“软”的活体组织对于人体及其器官的结合、支撑和保护至关重要。

在冯元桢对肠系膜的研究中表明,软组织的力学响应与硫化橡胶完全不同。相反,软组织通常表现出依赖于施加载荷方向的行为;也就是说,它们是各向异性的。

各向异性是由组织的微观结构引起的,该结构一般由一种或多种沿着优选方向排列的纤维物质增强的均匀基质材料组成。

基质物质、细胞和增强纤维的组织和相互作用定义了给定组织的力学性质。软组织包括肌腱、皮肤、血管、心脏组织、大脑等。了解这些软组织的结构和力学特性的变化对于检测不健康或患病物质,以及之后外科手术技术的发展至关重要。

对于硬组织和软组织,胶原蛋白通常是主要的支撑元素,为人体提供强度和结构完整性。迄今为止,研究人员已知的胶原蛋白类型超过12种;其中最显著的是增强软组织的纤维形成型I型。

胶原纤维的拉伸性能维护了器官的功能和完整性。对于那些主要功能是支撑拉伸的组织,有肌腱和韧带。胶原纤维呈自然平行排列。在皮肤中,纤维分布是一个更复杂的三维网络,尽管其平均方向是平行于表面的。

在放松状态下,胶原纤维是波浪状或起皱的,但在施加拉力时会变直。这导致许多研究人员假定这些纤维在受压时不承受载荷。在超弹性建模中,这导致了所谓的“拉-压开关”的引入,该开关排除了受压纤维的分析。

软组织的另一个主要组成部分是弹性蛋白 —— 被认为是已知的最线弹性生物固体材料。

这些纤维是细长的、橡皮般的条状物,可在其原始长度的大约1.6倍的拉伸下保持其弹性特性。

弹性蛋白在软组织中不像胶原纤维那样提供强度,主要存在于靠近心脏的动脉和静脉等血管壁中。

在皮肤中,弹性蛋白的作用是保持组织光滑。

软组织的一般力学性能

如Holzapfel所述,最好的本构模型是那些可以推广到预测所有类型软组织的在较大应变范围内的行为。

任何一种现象学模型的开发目的是确定一组材料常数,描述超弹性连续体在任何物理合理的大变形状态下的力学非线性响应。

在生理状态下,大多数软生物组织都是预应力的,这增加了模拟生物系统的复杂性。

在进行生物样品实验时,大多数组织通常会进行预处理。预处理涉及多个加载和卸载周期,直到样品的应力-应变关系可重复为止。

如果可以忽略应变速率对样品结果的影响,如成功进行预处理的样品,则说明存在一种伪应变能函数,并且该组织就会被视为超弹性。

由于组织内弹性蛋白和胶原蛋白的相互作用,产生的应力-应变曲线具有“J形”,如图所示:

img

这一定性发现导致使用指数项定义应变能函数的提出,例如冯元桢模型:

Ψ F u n g = 1 2 C ( e Q − 1 ) \Psi_{Fung} = \frac{1}{2}C(e^Q - 1) ΨFung=21C(eQ1)
与各向同性橡胶相比,在软组织中,应变硬化表现出更小的施加拉伸值。

当对胶原组织施加拉伸载荷时,最初纤维是波浪状的并且不承载负荷。在变形过程中,纤维开始朝着施加载荷的方向重新排列,并观察到非线性硬化效应。

具有最小的滞后损耗,一般情况下,在载荷移除后,连续体通常能保持弹性行为。

软生物组织的基质通常被假定为各向同性且不可压缩,因为生物组织主要含有水,而水在常压下被认为是不可压缩的。

在确定超弹性模型时,假设的不可压缩性大大降低了唯象学模型的数学复杂性和所需的材料常数数量,因此被认为是可取的。

Holzapfel和Ogden指出,“许多软组织可以被视为不可压缩材料,并且在以下这些研究中,都提供了理由。研究包括,Carew等人涉及动脉的研究,Vossoughi等人设计心肌组织的研究。”

然而,在最近的研究中,如Yossef等人的研究,以及Yosibash等人独立进行的动脉研究中,不可压缩性假设被认为错误地限制了模型在所有加载条件下完全表征材料响应的能力。

为了数学上的简化,通常使用neo-Hookean模型来捕捉连续体的不可压缩各向同性基体的响应:

Ψ N H = C 10 ( I 1 − 3 ) \Psi_{NH} = C_{10}(I_1 - 3) ΨNH=C10(I13)
目前文献中感兴趣的是四种组织类型的超弹性公式的发展。了解这些胶原质体的力学性质是当今科学家们的需求。但这并不意味着对整个生物超弹性建模领域进行了彻底分析,因为其他硬组织和软组织的弹性响应也在考虑之中。

皮肤

像许多软生物组织一样,对皮肤的力学表征受到了在外科和诊断(皮肤病学)的需求驱动。

尽管皮肤在人体中可以说是最大的器官,具有社会和功能(保护、感觉、代谢)上的重要意义,但对皮肤层的力学特性及其与皮肤疾病的相关性的研究相对较少。早在19世纪,Karl Langer就尝试了解人体皮肤的微观结构。

皮肤由三层组成:外层表皮、真皮和皮下组织。约70%的真皮重量和25%的体积由胶原蛋白组成。

胶原蛋白的分布导致皮肤呈各向异性响应。在低应变下,皮肤的响应由弹性蛋白主导,通常是线性的。随着应变的继续施加,胶原纤维开始抵抗载荷,并且返回非线性的J形曲线。

Annaidh等人对56个人皮肤样本进行了准静态单轴拉伸实验,发现平均弹性模量约为83.3 MPa。

朗格线(Langer Lines)的方向(皮肤中发生的自然张力线)和位置在背部显示出力学响应的差异。

迄今为止,超弹性建模更多地关注具有平行纤维的组织,如心肌或肌腱,因为这简化了模型,允许假设有关材料对称性。

Benítez和Montáns概述了已用于其他生物组织的模型,并建议通过结合预集成纤维分散技术,可以将这些模型用于皮肤;尽管没有尝试拟合实验数据。

对于皮肤,最近的工作有关注到数据驱动的WYPiWYG方法。Romero等人使用这种方法推导了一个应变能模型,该模型基于Groves等人提供的有关人类和小鼠皮肤圆形样本拉伸试验的数据。在这些研究中,皮肤被分类为横向各向同性,具有单一的平均胶原纤维取向。Romero假设组织是不可压缩的,以便使用WYPiWYG方法。

心肌

心肌组织位于心脏壁的中间层,位于内部心内膜和外部心外膜层之间。

超弹性建模主要集中在心室心肌上,其中Holzapfel和Ogden提出的模型被广泛接受。该研究描述了心室心肌的微观结构,包含平行的心肌细胞片,其中心肌细胞占据约70%的体积,胶原纤维占约5%的体积,排列成三维网络。肌肉纤维的取向随壁厚度而变化。

这种“膜”和“纤维”结构导致了正交异性材料的响应,如下图所示:

img

Holzapfel-Ogden模型是一种基于结构的模型,用各向异性伪不变量来描述纤维和膜方向的取向,并以此构造了应变能函数。该模型涵盖了Costa、Schmid以及Smaill和Hunter等人的正交异性模型作为特殊情况。

长期以来,Dokos等人的实验数据为评估心肌组织模型的性能提供了最佳测试。Dokos等人利用三轴剪切测试装置确定了猪室壁心肌在沿6个不同轴向施加简单剪切下的应力-应变响应。在六个实验中,有五个表现出不同的响应。

在Holzapfel-Ogden模型中,为了与这种观察到的行为相匹配,选择或排除了某些不变量,尽管最终通过8个材料参数实现了与Dokos数据的良好拟合。选择和排除不变量意味着该模型专门针对这些心肌数据,并因此在构建或应用模型之前需要预先建立对软组织微结构的显著了解。

Holzapfel-Ogden的研究假设心肌是不可压缩的,引用了Vossoughi等人在1980年的工作,他们认为该组织是“基本不可压缩的”。然而,Yin等人的最新研究似乎与此观点相矛盾,因此这种假设可能会限制超弹性模型的准确性和适用范围。

Dorfmann等人表明,各向异性组织的应力软化特性通常用主应变来分析是最容易的,类似于Valanis-Landel形式:

Ψ = ∑ i = 1 3 f ( λ i ) \Psi = \sum_{i=1}^{3} f(\lambda_i) Ψ=i=13f(λi)
Shariff 认为Holzapfel-Ogden模型的局限性在于所使用的不变量不可通过实验得到。Shariff模型使用物理不变量,与Dokos的实验数据再次达到了适当的拟合。然而,该模型尚未在更广泛的正交异性组织上进行测试。

更近期,Sommer等人的研究试图填补关于人类样本 passive心肌的实验数据空白。在这项实验研究中,使用了最新的先进设备,进行了类似于Dokos等人的六项简单剪切试验,以及双轴拉伸试验。还进行了额外的试验以揭示样本的微结构信息。总共对28名人类受试者的样本进行了检查。双轴和剪切试验表明,非线性各向异性行为在平均肌纤维轴向上抵抗力最强。

Latorre和Montáns基于数据的方法中,利用Dokos等人的数据采用了WYPiWYG方法构建了应变能函数。考虑到受压缩的胶原纤维被排除在公式之外,因为它们不承载载荷。这种排除受压缩的胶原纤维的概念首次出现在动脉的建模中。

动脉

动脉壁由三个主要层构成:内膜、介质和外膜。外膜由大量的胶原纤维组成(>63%组成),加强了弹性基质,其中纤维偏好平均取向。在大多数涉及动脉壁力学的超弹性模型中,通常使用各向同性的neo-Hookean模型来描述基质的响应,因为它能够描述弹性组织的行为:

Ψ N H = C 10 ( I 1 − 3 ) \Psi_{NH} = C_{10}(I_1 - 3) ΨNH=C10(I13)
因此,一个单一的剪切模量被认为足以描述对中等应变的响应。

Holzapfel和Ogden 详细介绍了动脉组织的本构建模的文献综述。在这篇综述中,动脉组织的力学行为被归类为“在生理范围内高度非线性、各向异性且基本不可压缩”。其中,动脉壁的非线性和各向异性在研究中通常是被广泛接受,然而最近有些研究则与不可压缩性的假设相矛盾,该研究指出,根据动脉的实验证据,“任何用于动脉的本构模型都不应事先假设不可压缩的运动学约束”。该证据显示,在加载过程中,各种样本类型的相对体积变化约为1.5%。

胶原增强的动脉壁的各向异性通常通过结构方法捕捉:将结构张量及其相关的伪不变量测度纳入到应力-应变能函数中。

Holzapfel等人提出了对动脉壁力学的早期综述,概述了各种冯元桢类型的模型,并提出了一种基于结构的模型,该模型应用了伪不变量和应变能函数的Flory类型分解。该模型假定动脉壁中的胶原纤维是完全对齐的,尽管Canham等人的研究表明样本中胶原纤维取向存在显著分布。

Gasser-Ogden-Holzapfel(GOH)模型是前一模型的扩展,通过“广义结构张量”(GST)方法引入了纤维分散的概念。使用二阶结构张量定义了正常意义上的平均纤维取向,尽管给定纤维的相对于这一平均值的偏差是通过对单位球上的von Mises分布进行积分来捕获。

Lanir 之前提出了一种将纤维分散适应到连续体意义上的替代方法,称为“角度积分”,尽管这比广义结构张量方法在计算上更昂贵。

自那以后,包含纤维分散的做法已被用于许多的各向异性软组织的研究。最近,Melnik等人使用四阶广义结构张量(GST)方法对Holzapfel-Ogden模型进行了修改,以处理正交不变量。GST方法已成功在ABAQUS软件中实现,并成功预测了关节软骨的响应。然而,纤维分散因子可以通过实验测量到的程度尚未确定。

GOH模型认为动脉壁为正交异性和不可压缩的。Yossef和Yosibash等人最近的研究均提供了强有力的证据,证明不可压缩性假设是错误的,因此,这些模型受到了限制。然而,这个模型是最早实现了胶原纤维拉伸-压缩开关概念的模型之一。如果不考虑到胶原纤维在压缩中不承载载荷(因为它们变得波浪状和皱褶),那么复合材料的刚度将被大大高估。该开关使用一个阶跃函数来实现,当结构张量的不变量为负值时,忽略用来描述纤维取向的结构张量的不变量,并已经在有限元算法中实现。

GOH模型基于传统的七个不变量中的仅三个,展现出与先前的HO模型相同的形式:

Ψ H O = Ψ i s o ( I 1 ) + Ψ a n i s o ( I 4 , I 6 ) \Psi_{HO} = \Psi_{iso}(I_1) + \Psi_{aniso}(I_4,I_6) ΨHO=Ψiso(I1)+Ψaniso(I4,I6)
这样做的动机是为了降低数学复杂性和适应所需的材料常数的数量。然而,Horgan和Murphy证明了这是对模型的一个重要限制,因为需要进一步的不变量来捕获所有变形模式中的正确行为。例如,在两种可能的剪切模式下,动脉的各向同性响应被预测出来;而实际上动脉是具有各向异性的。

脑组织

“非常柔软”的组织和器官有,比如大脑、肾脏或肝脏,它们不承受力学载荷。虽然对脑物质的力学性质的研究已经开始了大约50年,但直到相对最近,这个问题才真正引起生物力学领域的关注。Goriely等人提供了一份截至2015年的关于脑组织力学性质研究状况的全面综述。

大脑组织通常被认为是各向同性、不可压缩的连续介质。Budday等人表明,大脑中神经纤维的排列(提供了微观结构的各向异性)并不会像胶原纤维加强其他软组织那样导致大脑弹性行为的方向性响应。因此,通常可以假设大脑为各向同性。

由于其“非常柔软”的特性,大脑组织在加载下显示出显著的非线性粘弹性响应,即使在低应变速率下,加载和卸载后也会出现显著的滞回效应。Miller等人对大脑组织进行了准静态实验,并证明即使在如此低的应变速率下,高度非线性的粘弹性行为仍然存在。Budday等人的较新工作也支持了这一特性。

Mihai等人试图为大脑组织数据提出一个超弹性模型,他们建议可以使用实验数据中加载和卸载路径之间的平均值来近似应变速率趋近于零的情况。

目前精确的实验数据的缺乏通常限制了大脑组织的材料参数识别,尽管Budday的最新工作提供了与简单剪切、拉伸和压缩相对应的实质性数据,其加载是沿材料的不同方向进行的。在那项研究中,使用了修改后的单项各向同性Ogden模型:

Ψ O g d e n = 1 2 μ 1 α 1 λ 1 α 1 \Psi_{Ogden} = \frac{1}{2}\frac{\mu_1}{\alpha_1}\lambda_1^{\alpha_1} ΨOgden=21α1μ1λ1α1
来复制实验结果,并且一个值为0.66 kPa的剪切模量描述了线性范围内的行为。

Mihai等人提出了一系列针对大脑组织独特的复合剪切-压缩加载响应的各向同性超弹性应变能函数家族,剪切模量的值为0.3379 kPa。在引用的Budday和Mihai研究中,都使用了Levenberg-Marquardt优化算法并通过非线性最小二乘拟合分析来校准材料参数。

在文献中,大脑组织通常被假定为不可压缩的,这一假设源自Estes和McElhane的研究成果。在Miller和Chinzei的实验中,径向拉伸结果缺乏精确性和重复性,意味着这一假设无法被挑战。不可压缩性假设通常指的是“湿润”的大脑组织,其泊松比已经测量为0.496,接近理想的各向同性极限0.5。湿润的大脑组织是指在这种组织中,脑脊液不认为是与干物质分开的。对于大脑组织的超弹性建模,不可压缩性假设似乎是足够合适的。

在创建大脑组织的超弹性模型时面临的另一个挑战是样本在器官内部位置上的变异性。大脑有两种重要类型的组织:灰质和白质。这两种组织都具有不同的微观结构,导致了不同的力学性能。

灰质主要由神经元组成,而白质具有定向增强神经纤维的细胞结构。Prange和Margulies假设白质是各向异性的,而灰质则较少,他们的实验结果似乎支持了这个观点。

关于这两种组织哪一种更硬的观点存在分歧:对于大鼠和人类样本,灰质似乎是更硬的;而对于牛和羊,白质更硬。Budday的研究回顾了带状体(CC)、辐射冠(CR)、基底节(BG)和皮质(C)之间的力学响应的区域差异,如下图所示:

img

从皮质取出的标本在所有加载模式下都被发现是最硬的,而带状体则是最软的。

Prange和Margulies以及Prange和Meaney的研究还考察了区域、方向和年龄相关的特性,这使得假设一个统一的力学响应变得困难。

大脑的许多超弹性模型都是对各向同性的Ogden模型的应用,Neo-Hookean、Mooney-Rivlin、Fung和Gent模型在大脑组织的研究中被证明不够适用。

与先前讨论过的生物材料不同,大脑组织的微结构不包括承载载荷的胶原或弹性纤维,因此超弹性模型不应包括这些在通常情况下使用的应变硬化项。例如,Cloots等人试图将GOH模型用于大脑组织,然而该模型已被认为是不适用,因为大脑组织的行为与大多数其他软组织有本质上的不同。

5. 超弹性的非线性有限元

在1960年,Clough似乎是第一个公开使用术语“有限元”的人,这与他的数值平面弹性应力的研究相关的。在随后的半个世纪里,有限元分析(FEA)已经成为一个独立的数学领域;它充满了各种不同类型的单元,这些单元根据可用的自由度、积分方案以及所选择的插值场的阶数而变化。在固体力学中,这些单元被应用于大量的范围,来分析复杂的力学响应和应力集中。随着时间的推移,计算能力和资源的不断改善,计算结果的预测变得越来越准确。Zienkiewicz和Taylor以及Bathe贡献了大量的研究成果,涵盖了固体力学中应用的有限元的广泛领域。

有限元法(FEM)是工程师用来解决复杂的微分方程和边界值问题的一种数值近似技术。因此,根据定义,总会存在误差。计算力学的永恒目标是改进技术,将这些误差消除到可接受的范围内,以便为工程师提供工具,使他们能够为世界上许多行业开发技术。

在弹性学中,有限元方法将已定义几何形状的连续体离散化,然后应用适当的Dirichlet或Neumann边界条件,解决以下一组线性方程:

P = K ⋅ Q P = \pmb K \cdot Q P=KQ
其中, Q Q Q 是全局节点位移场, P P P 是施加的载荷, K \pmb K K 是刚度矩阵。刚度矩阵的逆的计算开销会非常大。

有限元程序的规模通常是巨大的,首先必须关注局部单元水平上的计算,确保有限元过程既稳定又一致,以确保对方程的解的准确性有信心。

分片试验概念最早由Bruce Irons在1960年代提出的,具有重要意义,因为它评价了单元在稳定性和收敛性方面的表现。

在随后的几年里,关于分片试验出现了零星的批评,尤其是来自Stummel的批评,他提出了一个数学例子,违反了Irons的测试约束。在此之后,Irons提出了自己的“工程师辩护”,然后Taylor及其同事们提出了一个更严格的分片试验方法,完全解决了以前的批评。

Taylor表示,更新后的分片试验可以放心地用于“评估特定有限元形式的渐近收敛速率,检查逼近算法的稳健性,并开发有用且准确的有限元,而不违反连续性要求”。在这种意义上,收敛性意味着随着单元尺寸趋近于零,近似解应趋向于精确的“真实”解。这被称为“一致性条件”,单元还必须满足“稳定性条件”,即解是唯一的且非虚假的。一旦满足了适当的单个和多个单元的分片试验,该单元就可以用于应用。

对于超弹性的建模,载荷-位移曲线是高度非线性的。超弹性材料的非线性有限元分析需要进行迭代求解,以确定给定边界条件在增量下的未知位移场。

Newtom-Raphson迭代方法最适用于有限元方法,并给出位移场的估计如下:

Q ( i + 1 ) = Q ( i ) + K − 1 ⋅ F ( Q ( i ) ) Q^{(i+1)} =Q^{(i)}+\pmb K^{-1} \cdot F(Q^{(i)}) Q(i+1)=Q(i)+K1F(Q(i))
数组 F 是以当前位移估计的广义力向量,对于给定的迭代步 i ,该向量当与在加载曲线中适当的点上应用的边界条件相匹配时,该过程结束。

Newtom-Raphson方法需要确定切线刚度矩阵。这需要对所选的应变能函数和本构模型的四阶切线弹性张量进行解析求解。在对四阶张量的广泛研究中,Itskov详细介绍了用于确定文献中许多模型的这种四阶弹性张量所需的张量代数和微积分。

对于基于不变量的模型,切线弹性一般是由微分的链式法则确定的,如下:

S = 2 ∂ Ψ ( I m ( C ) ) ∂ C = 2 ∂ Ψ ∂ I m ∂ I m ∂ C C ~ = 4 ∂ 2 Ψ ( I m ) ∂ C ∂ C = 2 ∂ S ( I m ) ∂ C \pmb S = 2 \frac{\partial \Psi(I_m(\pmb C))}{\partial \pmb C} = 2 \frac{\partial \Psi}{\partial I_m}\frac{\partial I_m}{\partial \pmb C} \\ \tilde {\mathbb C} = 4 \frac{\partial ^2\Psi (I_m)}{\partial \pmb C \partial \pmb C} = 2 \frac{\partial \pmb S(I_m)}{\partial \pmb C} S=2CΨ(Im(C))=2ImΨCImC~=4CC2Ψ(Im)=2CS(Im)
不变量的导数表达式可以在Holzapfel等文献中找到。如果切线弹性无法通过解析方法确定,那么可以选择一个合适的刚度矩阵近似,并且应用Newtom-Raphson迭代方法,此时被称为**“拟牛顿”迭代方法**。

近似技术可能包括所谓的BFGS割线更新方法(以Broyden-Fletcher-Goldfarb-Shanno 命名),结合基于切线的方法(例如Oñate 用于杆和销栓连接桁架)。

Dennis Jr和Schnabel提出了切线刚度的有限差分近似。该近似技术通常会导致非对称的刚度矩阵,并且拟牛顿过程的稳定性和收敛速度通常会受到影响。

在处理不可压缩性时,对应变能函数施加的运动学约束通常会导致有限元方法的数值困难。例如,当各向同性泊松比在范围 0.49 < ν < 0.5 0.49<ν<0.5 0.49<ν<0.5 时,由于刚度矩阵的逆中存在数值不稳定性,无法实现最小势能原理。

此时需要采用混合变分格式,这是由Herrmann 首次提出的(有关方法请参见Zienkiewicz和Taylor 以及Oden和Kikuchi )。这些方法通常包括一种罚方法拉格朗日乘子,以强制实施不可压缩条件。

惩罚方法被Malkus 成功地用于模拟近不可压缩性,同时避免了病态条件。然而,Simo和Taylor 发现,比起经典的惩罚方法,更先进的“增广拉格朗日方法”(由Powell 和Hestenes 引入)在处理不可压缩性方面更简单且更有效。

尽管在有限元设置中,有人认为基于拉伸的超弹性方法在计算上比基于不变量的形式更加复杂和昂贵,但对于各向同性超弹性建模而言,目前Ogden模型是最容易使用的计算模型;该本构模型可以在ABAQUS软件中使用。

Duffett和Reddy 似乎是最早构建此模型的数值实现的人之一,尽管他们的关注范围仅限于平面问题。稍后,Başar和Itskov为类橡胶的壳体开发了一种变分程序,能够捕获Ogden材料的有限旋转和大应变。

对于各向异性超弹性,GOH模型:

Ψ H O = Ψ i s o ( I 1 ) + Ψ a n i s o ( I 4 , I 6 ) \Psi_{HO} = \Psi_{iso}(I_1) + \Psi_{aniso}(I_4,I_6) ΨHO=Ψiso(I1)+Ψaniso(I4,I6)
已经在商业有限元软件中被广泛应用。

该模型考虑了纤维增强物从平均优选方向偏离的任何明显分散性。该模型的弹性张量也已给出。数值试验能够确定描述纤维分散这个因素对整体力学响应的影响:较大的分散导致管状动脉的刚度响应增加

Li等人通过提出一种排除受压纤维的算法,进一步推进了这种类型模型的实现。在前文中,已经指出这是具有胶原增强的软组织的一个现实特性。Li等人的实现涉及将纤维分散公式解耦以排除受压纤维,并提出了一种自适应有限元积分方案,数值求解这类问题的二维和三维弹性张量。

这种数值实现能够证明排除受压纤维对软组织(如颈动脉)的整体弹性响应的重要性。一个超弹性模型可以很轻松地被应用于数值模拟和有限元方法,这是它具备的一个关键品质。

最后,值得一提的是,数据驱动方法也显示出计算友好的特点。Crespo等人指出,目前ADINA软件中提供了Sussman-Bathe WYPiWYG公式。

6. 增强复合材料力学

现代纤维增强复合材料(FRCs)对许多行业具有吸引力,尤其是航空航天、建筑和生物医学工程。

这些材料因其轻量化但强度出众而备受推崇,工程师可以通过调整它们的力学特性来执行特定功能。大多数纤维增强复合材料由强聚合物、玻璃或金属纤维增强的树脂基材组成,并以系统的方式排列。

与生物组织类似,增强微结构导致了与方向相关的响应;大多数复合材料可以被归类为横向各向同性或正交各向异性。

纤维通常被假定为连续的,并且长于其直径;它们被密集地聚集在一起,以至于复合材料的体积有接近50%被纤维物质所占据。总的来说,FRCs在其整个可用变形范围内具有线性应力-应变响应。

在应用中,FRCs通常以层压板的形式使用。在这里,单个层片的纤维处在一个方向,并且被粘合在一起,偏移层的顺序对层压板的整体力学性能至关重要。

纤维增强复合材料的连续体有三个尺度:纤维、层片和层压板。工程师必须决定在哪个尺度上进行分析。

在层片尺度上,混合法则允许将连续体的力学性能近似为矩阵树脂和增强纤维的个别强度的函数,使用纤维体积比混合。

在层压板尺度上,经典层合板理论(CLT)通常用于建模FRCs。最近,Boisse等人表明,纤维复合材料通常不能用标准的柯西线性连续介质力学来描述;缺乏正确检测纤维弯曲刚度的能力,也没有纤维滑移的可能性。在复合材料的有限元分析中,由于复杂的方向行为,通常会出现数值问题,例如自由边奇异性问题。

Garg在层间剥离的研究表明,复合材料的各向异性和异质性导致了各种可能的损伤模式。损伤的开始和扩展是一系列事件的结果,各种模式相互发展并相互作用。

复合层压板最关键的失效机制似乎是层间剥离。目前,对于层压复合材料中层间剥离的预测能力有限,因此限制了工程师对这些材料的完全认识。对于层压复合材料中不同层之间界面的力学响应的数值建模对于层间剥离的预测至关重要。

自由边奇异性

如下图展示了一个平衡角铺层的例子:

img

通常使用以下符号来描述层压板的“铺层”或堆叠顺序

[ θ 1 / θ 2 / θ 3 / ⋯   ] s [\theta_1/\theta_2/\theta_3/\cdots]_s [θ1/θ2/θ3/]s

其中, θ i θ_i θi 表示第 i i i 层的纤维方向,铺层由外表面开始; s s s 表示该模式是关于中点对称的,并且复合材料是平衡的。这个对称平面通常被称为复合材料的中面

复合材料的自由边是给定层间界面平面与复合材料自由表面的交点,如上图的点A所示,这通常被称为界面角。层压复合材料的层间应力响应非常难以准确建模。

随着接近复合材料的自由边,柯西无穷小应力张量变得不符合物理规律。这被称为自由边奇异性问题,已经研究了30多年;

起始于Pipes和Pagano的研究,Kant和Swaminathan提供了层间应力预测的综述,尽管更详细的问题分析可以在其他文献中找到。

考虑对称的四层固定宽度层压板,其两端承受恒定的轴向应变,如上图。

这个实验已被许多研究用来检测和解决自由边奇异性问题(参见Whitcomb等人的综述)。

在施加单轴拉伸状态后,给定层中纤维与载荷方向越一致,其所承受的载荷就越大。相邻不同层之间的位移不相容性导致大量层间应力出现奇异行为,这些应力在自由边附近表现出来。

Kim等人解释称,由于相邻层的方向弹性性能不匹配,应力奇异性通常发生在自由边附近。因此,为了在层合板界面保持变形一致,需要产生大量的自由边应力。

对于这类应力场景,通常使用解析解的非奇异近似解,尽管它们不能严格展示自由边的奇异行为。大多数试图解决该问题的尝试包括了对数值系统进行额外用户输入,人为地处理界面,例如采用特殊的界面有限单元或建立指定的“粘结区域”。

在复合材料层内部界面处的许多数值问题的原因已经确定是由于粘结层中各向异性弹性性能的不同取向导致的。

最近,有人建议采用一种修改过的非经典形式的柯西弹性理论,最初是由Kellermann和Furukawa提出,并由Kellermann等人进一步发展,可能有助于缓解这一问题。

该理论假设,一个正交各向异性的连续体在给定的材料平面具有不同方向的剪切模量,这一概念似乎得到了实验数据的支持。

当受拉力作用时,不同层中的纤维将进行相对旋转,将自身方向重新调整为所施加的载荷的方向。如果各层完全粘结,那么就需要能量来抵抗这种变形,而经典力学中是无法捕捉到这一点。

这种模型的有限元实现需要钻孔自由度,来准确捕捉微旋转,同时又不会产生错误的数值锁定。

微极弹性和钻孔旋转

以前研究中,对于以非经典方式对纤维增强复合材料的建模尝试包括引入微极理论

微极理论通常是对结构内部的微观长度尺度进行建模,这在生物组织和纤维复合材料中可能是非常重要的。这些理论实际上起源于19世纪Cosserat兄弟的重要工作,但被遗忘了大约50年了,直到在1960年代才被重新捡起。

Cosserat理论认为内部微结构具有一个相对于完整连续体的传统位移场独立的局部旋转场。Cosserat连续体对旋转惯性会作出反应,并结合了体力和牵引力偶的概念。

微极理论随后得到进一步发展,汇总在Eringen的综述中。Eringen的这项工作,以及Mindlin和Tiersten、Toupin 的工作发展了不确定偶应力理论。在这里,旋转不是一个独立的场,应力张量的某些部分一开始是不确定的。

Green和Rivlin对多极力学的详细研究,以及Mindlin关于线性微结构理论的工作,启发了数学家重新探索微极弹性领域。

这些理论中的许多都被Eringen的更广泛的微极弹性所包含;非线性框架是由他之前微极线弹性理论的推广得到的。

材料组成部分考虑了哑铃分子,它们的旋转是独立于所施加的拉伸的。Eringen的微极理论类似于Cosserat模型,但增加了一个额外的局部微惯性项。

微极弹性理论在颗粒状或纤维状物体中非常有用。Lakes的工作和Lakes与Benedict的工作提供了各种模型中的实验技术和材料常数的物理意义。

在有限元方法中,通过允许旋转自由度来结合微极理论,这一做法应用在数值壳体的框架内。对于考虑薄壁单元的情况,备选的有限元公式提供了对固有膜特性更简单的表示。

Allman开发的三角形和四边形单元成功通过了适当的分片试验;其新颖之处在于位移和旋转自由度的插值场各自独立的选择是不同的。这一概念在Cook的四边形单元工作中得到了拓展,该工作结合了Allman类型的插值场。

Reissner首先提出了独立旋转场的混合变分公式,随后许多先进的有限元被相继开发。Hughes和Brezzi就这一主题给出了综述,并详细写出了混合和位移场的变分方程,并证明了有限元的收敛性。

在这里,假设了Allman类型的插值场可以纳入该框架中,这一概念随后在Ibrahimbegovic等人和Ibrahimbegovic与Wilson的工作中得到了成功的探索。开发的膜元素使用混合场和基于位移的公式时具有高精度。

7. 总结

为了提出一个正交各向异性超弹性模型,首先回顾过去三个世纪中发展起来的连续介质力学基础。

非线性连续介质力学的历史为本论文探讨的问题提供了一些背景:弹性理论和有限运动学理论的演变,以及最简单和优雅的本构定律的发展,这些本构定律具有实验可操作和有意义的材料参数。

基于不变量的超弹性方法具有一些优势,即这种响应函数可以轻松地纳入有限元分析中,并且能够满足客观性多凸性的约束。

然而,在追求数学简化的过程中,对于包含的必要不变量测度的选择常常是一个有争议的话题,并且经常依赖于缺乏直观物理意义的不变量。

尽管如此,被实验的生物组织通常还是用这些特殊的形式来描述。本论文旨在将超弹性与其历史起源重新联系起来,特别是将胡克定律统治的正交各向同性线弹性延伸到任何尺度的分析中。本文提出的本构模型和随后的有限元处理是在连续介质力学的基础上提供了我们自己的小小补充,这个基础是由之前许多灵感激发的思想所奠定的。

本构模型名字
Ψ ~ = 1 2 ( λ t r 2 ( ϵ ) + μ t r ( ϵ 2 ) ) \tilde \Psi = \frac{1}{2}(\lambda \rm{tr}^2(\epsilon) + \mu \rm{tr}(\epsilon^2)) Ψ~=21(λtr2(ϵ)+μtr(ϵ2))Hookean
Ψ R i v l i n = ∑ i , j = 0 N C i j ( I 1 − 3 ) i ( I 2 − 3 ) j \Psi_{Rivlin} = \sum_{i,j=0}^NC_{ij}(I_1-3)^i(I_2-3)^j ΨRivlin=i,j=0NCij(I13)i(I23)jRivlin
Ψ N H = C 10 ( I 1 − 3 ) \Psi_{NH} = C_{10}(I_1 - 3) ΨNH=C10(I13)Neo-Hookean
Ψ M R = C 10 ( I 1 − 3 ) + C 01 ( I 2 − 3 ) \Psi_{MR} = C_{10}(I_1-3)+C_{01}(I_2-3) ΨMR=C10(I13)+C01(I23)Mooney-Rivlin
Ψ Y e o h = C 10 ( I 1 − 3 ) + C 20 ( I 1 − 3 ) 2 + C 30 ( I 1 − 3 ) 3 \Psi_{Yeoh} = C_{10}(I_1-3)+C_{20}(I_1-3)^2 + C_{30}(I_1-3)^3 ΨYeoh=C10(I13)+C20(I13)2+C30(I13)3Yeoh-Fleming
Ψ F u n g = 1 2 C ( e Q − 1 ) \Psi_{Fung} = \frac{1}{2}C(e^Q - 1) ΨFung=21C(eQ1)Fung
Ψ = ∑ i = 1 3 f ( λ i ) \Psi = \sum_{i=1}^{3} f(\lambda_i) Ψ=i=13f(λi)Valanis-Landel
Ψ O g d e n = 1 2 ∑ i = 1 N μ i α i ( λ 1 α i + λ 2 α i + λ 3 α i − 1 ) \Psi_{Ogden} = \frac{1}{2}\sum_{i=1}^N\frac{\mu_i}{\alpha_i}(\lambda_1^{\alpha_i}+\lambda_2^{\alpha_i} + \lambda_3^{\alpha_i}-1) ΨOgden=21i=1Nαiμi(λ1αi+λ2αi+λ3αi1)Ogden
Ψ = f ( I 1 ) + g ( I 4 ) + g ( I 6 ) \Psi = f(I_1)+g(I_4) + g(I_6) Ψ=f(I1)+g(I4)+g(I6)Hozapfel-Ogden
Ψ H O = Ψ i s o ( I 1 ) + Ψ a n i s o ( I 4 , I 6 ) \Psi_{HO} = \Psi_{iso}(I_1) + \Psi_{aniso}(I_4,I_6) ΨHO=Ψiso(I1)+Ψaniso(I4,I6)Hozapfel
  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 连续体和结构的非线性有限元分析是一种计算力学方法,旨在通过运用离散的数学概念对实际工程问题进行仿真和预测。这些仿真和预测涉及对非线性物理现象(如大变形、弹塑性、损伤、破坏等)的建模和分析,从而使得工程师可以更好地理解结构或材料的行为和响应,在设计和开发过程中更好地优化其性能。 在非线性有限元的数学模型中,物体或结构被划分为许多小的离散元素,每个元素都包含一些节点。这些节点的形变和位移受到一定的边界条件和约束条件的限制。通过数值迭代求解方法,可以计算出每个节点的形变和位移,并对整个物体或结构的响应进行计算和分析。 其中,连续体非线性有限元分析主要用于液体、气体或其他连续介质的分析;而结构非线性有限元分析则主要用于结构材料的力学行为研究。例如,人们可以利用非线性有限元模拟汽车的碰撞、建筑物的抗震性能、船舶的底部结构等等。 总的来说,连续体和结构的非线性有限元分析在现代工程和科学技术中都具有很重要的应用价值。通过计算机模拟,这些方法可以使得工程师更好地理解材料和结构的性能,从而在设计和生产过程中实现更好的优化和改进。 ### 回答2: 连续体和结构的非线性有限元是一种重要的数值模拟方法,它广泛应用于各种物理场的计算。其中,连续体模型适用于描述流体、气体等具有连续性的介质;而结构模型则适用于描述由离散束构件构成的结构体系。 非线性有限元是指在有限元分析中考虑材料、几何、边界等因素引起的非线性问题,例如材料非线性、几何非线性和接触非线性等。在实际工程应用中,许多材料行为都是非线性的,如塑性、损伤、蠕变、非线性弹性等。因此,非线性有限元分析是非常重要的,它可以更准确地预测实际工程的性能和行为。 在处理非线性问题时,有限元法需要使用一些特殊的技术,如增量形式、牛顿-拉夫逊法、弧长法等,来保证解的精确性和收敛性。因此,对于非线性有限元分析的研究和应用,是当前数值模拟领域的一个重要方向。 总之,连续体和结构的非线性有限元分析是一种重要的数值模拟方法,它在工程设计和科学研究中发挥着重要作用。随着数值模拟技术的不断发展和完善,相信这种方法将会得到更广泛的应用和发展。 ### 回答3: 连续体和结构的非线性有限元是当前热门的研究方向之一,其主要涉及到材料非线性、几何非线性和边界非线性三个方面。 首先是材料非线性方面,由于材料在加载后会出现非线性变形和非线性应力等现象,因此需要建立非线性材料模型进行分析。其中,常用的非线性材料包括塑性材料、粘弹性材料、损伤材料等。 其次是几何非线性方面,也被称为大变形分析。在负载作用下,结构体内的力学反应将导致几何上的非线性分析,如结构体的弯曲、刚体平移和扭曲等。为了分析这些非线性问题,有限元理论需要考虑诸多因素,如材料硬度、结构体尺寸变化等。 最后是边界非线性方面,也称作边界条件的非线性。边界条件的变化会影响结构的响应,比如连接件的变形会影响结构的刚度和位移等。因此,建立精确的边界条件是非常关键的一步。 总之,连续体和结构的非线性有限元是一个非常复杂的领域,需要深入研究和应用,以解决由此带来的各种问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值