为什么L1比L2更容易得到稀疏解

这个问题被面试官问到的概率极其高。网上给多解释都是几何理解。个人感觉有些牵强(或者是作者没get到点)。总之,为了避免再次被问到卡壳。搜了很多解释。终于,找到了一个最好理解的答案。从数学角度去理解。

20210316更新:无意间在tensorflow的教程中看到了这句话,真的是一语道破

原文:L1 regularization pushes weights towards exactly zero encouraging a sparse model. L2 regularization will penalize the weights parameters without making them sparse since the penalty goes to zero for small weights-one reason why L2 is more common.

翻译:L1正则推动参数为0,使模型更加稀疏。而L2正则化将惩罚权重,但不会使得模型模型更加稀疏,因为接近0的参数的惩罚(w^2)接近0——这是L2更常见的原因。

——————之前从数学推导的角度——————————

原始的损失函数:Loss(w)。设其在0的导数为D(0) = d(0).

引入L1的损失函数:Loss(w)+lamda1*|w|。则其在0的导数为D1(w) = d(0)+lamda1*sgn(w)。

引入L2的损失函数:Loss(w)+lamda2*|w|^2。则其在0的导数为D2(w) = d(0) + 2*lamda2*w。

若L1在0点能获取稀疏解,需要满足的条件为:D1(w) 在0存在极小值。

D1(0+) = d(0)+lamda1(if w>0);

D1(0-) = d(0)-lamda1(if w<0);

D1(0) 为极小值点的必要条件为:D1(0+)*D1(0-)<0。=>lamda1*lamda1<d(0)^2。

若L2在0点能获取稀疏解,需要满足的条件为:D2(w) 在0存在极小值。即D2(w)*D2(2) =0 ;

d(0) + 2*lamda2*w=0;=>d(0) =0;(引入L2,在0点的导数没有发生变化)

L1获取稀疏解的条件明显比L2获取稀疏解的条件宽松得多。所以,L1比L2更容易获取稀疏解。

备注:引入L1后,代价函数在0点的导数有一个突变,获取稀疏解的概率变大。只要满足D1(0+)和D1(0-)异号即可。

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值