1. 该集合用于图像分类。
2.数据集介绍:该数据集是一个手写数字字符数据集合。
3.可以通过MNIST数据集得到一些重要的结论:
(1)调整神经网络结构,对最终的准确率有非常大的影响,没有隐藏层或激活函数,模型的准确率为92%,而用了隐藏层和激活函数,准确率可以达到98.4%。
(2)卷积神经网络(CNN)的准确率为99%,所以卷积神经网络比全连接神经网络更善于处理图像信息。
参考链接
https://blog.csdn.net/baidu_40840693/article/details/82958082
mnist数据集介绍(手写字符识别数据集合)
最新推荐文章于 2022-10-13 08:47:13 发布