1. 该集合用于图像分类。
2.数据集介绍:该数据集是一个手写数字字符数据集合。
3.可以通过MNIST数据集得到一些重要的结论:
(1)调整神经网络结构,对最终的准确率有非常大的影响,没有隐藏层或激活函数,模型的准确率为92%,而用了隐藏层和激活函数,准确率可以达到98.4%。
(2)卷积神经网络(CNN)的准确率为99%,所以卷积神经网络比全连接神经网络更善于处理图像信息。
参考链接
https://blog.csdn.net/baidu_40840693/article/details/82958082
mnist数据集介绍(手写字符识别数据集合)
最新推荐文章于 2024-09-23 21:52:24 发布
本文介绍了MNIST数据集,一个用于图像分类的手写数字字符数据集。内容包括数据集特点及通过实验得出的结论:调整神经网络结构能显著影响准确率,使用隐藏层和激活函数能提升至98.4%;而卷积神经网络(CNN)在该任务上的准确率高达99%,表现出处理图像信息的优势。
摘要由CSDN通过智能技术生成