延迟相乘叠加求和(Delay Multiply and Sum)
延迟相乘叠加(Delay Multiply and Sum, DMAS)算法,最初是为雷达微波系统设计的,研究者们对 DMAS 波束合成方法进行了修改,并应用超声成像。结果表明,DMAS 波束合成在模拟和实验中的表现都优于传统的延时叠加(Delay and Sum, DAS),这种新方法带来的主要改进是对比度分辨率明显提高(即主瓣和侧瓣更窄),从而增加了动态范围,提高了 B 型超声图像质量。
与传统 DAS 相似,DMAS 算法通过对来自超声换能器阵元的信号应用几何计算延迟来聚焦接收到的波束。在求和之前,信号会进行组合耦合和乘法运算。这一操作可解释为孔径自相关函数,即在每个时间瞬间,计算有源传感器收集的所有接收信号之间的空间交叉相关性。因此,DMAS 是一种非线性波束合成算法。
通常,在一个简单的 DAS 波束合成器中,接收到的信号会被延迟(重新对齐)叠加,以产生扫描线相对应的最终输出。通过这种方式,波束成形器的目的是对来自所需点的信号成分进行重新相位和增强,同时尽可能地去除来自其他方向的不需要的干扰。
整个扫描完成后,波束合成的信号经过包络检测、对数压缩和进一步可能的信号处理,最后用于形成和显示二维图像(扫描转换)。
DMAS算法参考文献:https://ieeexplore.ieee.org/document/6960091
DMAS 算法原理框图
图中假定有一个三阵元接收孔径, x i ( i = 1 , 2 , 3 ) \ x_i(i=1,2,3) xi(i=1,2,3) 是一条扫描线的接收射频(RF)信号。信号 x i \ x_i xi被延迟、耦合和相乘;然后在保留符号的情况下对相乘的绝对值进行平方根运算,对得到的信号求和并进行带通(BP)滤波。通过解调、归一化和对数压缩(未显示),输出 y F − D M A S \ y_{F−DMAS} y