量化交易入门笔记-数据获取函数 一

本文介绍了量化交易中用于获取历史和实时数据的几个关键函数,包括history()、attribute_history()、get_current_data()、get_bars()和get_price()。详细阐述了各个函数的参数、返回数据格式和使用示例,帮助初学者理解如何在Python中进行数据获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

history()函数

history()获取历史数据,可查询多个标的单个数据字段,返回数据格式为 DataFrame 或 Dict(字典),其语法格式如下:

history(count, 
        unit='1d', 
        field='avg', 
        security_list=None, 
        df=True, 
        skip_paused=False, 
        fq='pre')

在获取天数据时,不包括当天的数据,即使是在收盘后

关于停牌:因为获取多只股票的原因,为了保持数据格式的一致,默认没有跳过停牌的日期,停牌的数据使用停牌前的数据填充

参数解析:

  • count : 表示返回结果集的行数

  • unit : 表示单位时间的长度,几天或者几分钟

    • Xd : 几天
    • Xm : 几分钟

    **当X>1时,fields只支持['open', 'close', 'high', 'low', 'volume', 'money']这几个标准字段 **

  • field : 表示获取的数据类型,支持 SecurityUnitData 里所有的基本属性,包括:

    • open : 开盘价
    • close : 收盘价
    • high : 最高价
    • low : 最低价
    • volume : 成交量
    • money : 成效额
    • factor : 前复权因子
    • high_limit : 涨停价
    • low_limit : 跌停价
    • avg : 平均价 (money/volume)
    • pre_close : 前一个单位时间的结束时的价格
    • paused : 布尔值。用来判断是否停牌
  • security_list : 用来获取数据的股票列表,其值如果为None,则默认从context.universe中选择股票

  • df : 如果是True,则返回 pandas.DataFrame,否则返回dict;默认为 True

  • skip_paused : 用来设置是否跳过不交易日期(包括停牌、未上市或者退市后的日期)。如果不跳过,停牌时会使用停牌前的数据填充。上市前或者退市后数据都为nan。需要注意的是,该参数的默认为False,即不跳过不交易日期

  • fq : 表示复权选项。值为"pre",表示前复权;值为 None ,表示不复权,返回实际价格;值设置为 ”pos",表示后复权

示例:

import pandas as pd

# 显示中国平安 000009 最后5个交易日每天的收盘价信息
df = history(5, 
             unit='1d', 
             field='close', 
             security_list='000009.XSHE', 
             df=True, 
             skip_paused=False, 
             fq='pre')
df
000009.XSHE
2018-09-25 4.77
2018-09-26 4.69
2018-09-27 4.59
2018-09-28 4.64
2018-10-08 4.50
import pandas as pd

# 同时显示多只股票的第天的收盘价信息
df = history(5, 
             unit='1d', 
             field='close', 
             security_list=['000001.XSHE',
                           '000002.XSHE',
                           '000009.XSHE'], 
             df=True, 
             skip_paused=False, 
             fq='pre')
df
000001.XSHE 000002.XSHE 000009.XSHE
2018-09-25 10.55 24.64 4.77
2018-09-26 10.71 24.67 4.69
2018-09-27 10.74 24.45 4.59
2018-09-28 11.05 24.30 4.64
2018-10-08 10.45 22.05 4.50
import pandas as pd

df = history(3,
            unit='1d'
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值