负二项分布
定义
负二项分布定义:
设成功概率ppp,失败概率1−p1-p1−p,独立实验,直到rrr次失败,则成功次数k服从负二项分布:
NB(k;r,p)=Ck+r−1r−1(1−p)rpk,k=0,1,2,3……
NB(k;r,p)=C_{k+r-1}^{r-1}(1-p)^rp^k, k=0,1,2,3……
NB(k;r,p)=Ck+r−1r−1(1−p)rpk,k=0,1,2,3……
均值:
μ=rp1−p\mu=\frac{rp}{1-p}μ=1−prp
方差:
σ2=rp(1−p)2\sigma^2=\frac{rp}{(1-p)^2}σ2=(1−p)2rp
此外,还有:
p=μr+μp=\frac{\mu}{r+\mu}p=r+μμ
σ2=μ+αμ2,令α=1r\sigma^2 = \mu+\alpha\mu^2,令\alpha=\frac{1}{r} σ2=μ+αμ2,令α=r1
负二项分布是概率论中的一种离散概率分布,涉及独立实验直至达到r次失败为止的成功次数。其定义中,成功概率为p,失败概率为1-p。该分布的均值μ=1-pr/p,方差σ²=(1-p)²rp。通过分布的性质,可以推导出p=r/(μ+r)以及方差的一个形式:σ²=μ+αμ²,其中α=r/μ。
2万+





