负二项分布

负二项分布是概率论中的一种离散概率分布,涉及独立实验直至达到r次失败为止的成功次数。其定义中,成功概率为p,失败概率为1-p。该分布的均值μ=1-pr/p,方差σ²=(1-p)²rp。通过分布的性质,可以推导出p=r/(μ+r)以及方差的一个形式:σ²=μ+αμ²,其中α=r/μ。
摘要由CSDN通过智能技术生成

负二项分布

定义

负二项分布定义:
设成功概率 p p p,失败概率 1 − p 1-p 1p,独立实验,直到 r r r次失败,则成功次数k服从负二项分布:
N B ( k ; r , p ) = C k + r − 1 r − 1 ( 1 − p ) r p k , k = 0 , 1 , 2 , 3 … … NB(k;r,p)=C_{k+r-1}^{r-1}(1-p)^rp^k, k=0,1,2,3…… NB(k;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值