深入理解图(Graph)与图神经网络 (GNN)(其二)

文章讨论了GNN在处理复杂图结构时面临的过度压缩问题,以及如何通过图的重连技术来改善信息传播,提高模型性能。重连包括邻域抽样、注意力机制、连接性扩散和潜在图学习等方法,但同时也破坏了GNN的理论基础,引入了新的设计和训练考量。尽管存在理论与实践的鸿沟,重连技术在实际应用中显示出了优势,为处理图数据提供了更灵活的策略。
摘要由CSDN通过智能技术生成

图的重连破坏了GNN的理论基础。GNN和传统的CNN之间有一个重要且略微微妙的区别,那就是图既是输入的一部分,也是计算结构的一部分。传统的GNN使用输入图(Graph)来传播信息,从而获得反映图结构和特征的表示。然而,由于某些结构特性("瓶颈")的存在,有些图对信息传播不太友好,导致来自过多节点的信息被"挤压"到单个节点的表示中——这种现象被称为"过度压缩"

这种"过度压缩"现象可能导致信息丢失和模糊,从而影响模型的性能和表达能力。传统的GNN模型可能无法有效地处理具有复杂结构或高度连接的图,特别是当信息需要在整个图中传播时。这限制了GNN在某些情况下的适用性,并阻碍了模型的进一步发展。

为了克服这个问题,研究人员提出了一些解决方案,如图的重连。图的重连通过重新定义图的连接方式,改变信息传播的路径,从而缓解了"过度压缩"的问题。重连可以通过改变图的边连接、增加边的权重或调整图的拓扑结构来实现。这样的重连策略可以帮助信息在图中更好地传播,从而提高模型的表达能力和性能。 然而,图的重连也引入了新的挑战和问题。它破坏了传统GNN模型的理论基础,并需要重新考虑模型的设计和训练策略。此外,重连的选择和实施需要谨慎,并且需要基于具体的应用领域和任务需求进行调整和优化。

现代GNN的实现通过解耦输入图和计算图(或为计算目的而对其进行细化),采用一种称为"图重连"的技术来应对这种现象。重连可以采用邻域抽样(neighbourhood sampling)的形式(例如GraphSAGE 中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值